At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Installation of certain hardware takes a random amount of time. The installation times form a normally distributed distribution with a standard deviation 5 minutes and a mean of 45 minutes. A computer technician installs the hardware on 31 different computers. You are interested to find the probability that the mean installation time for the 31 computers is less than 43 minutes.

Select the most appropriate item that pertains to the problem.

a. z=-0.4
b. none of these
c. z=-2.23
d. z=2.23

And,
What is the probability that the mean installation time for 31 computers is less than 43 minutes?

a. 0.400
b. 0.345
c. none of these
d. 0.0129
e. 0.987


Sagot :

fichoh

The most appropriate values are:

z = - 2.23

The corresponding probability is : 0.01297

Mean, μ = 45

Standard deviation, σ = 5

Sample size, n = 31

The standard score, Z ; Since distribution is normal is obtained thus;

Z= (x - μ) ÷ (σ/√n)

For, x = 43

Z = (43 - 45) ÷ (5/√31)

Z = - 2.227

The probability :

Using the standard normal distribution table:

P(Z < - 2.227)

P = 0.01297

Hence, Z = - 2.23

P(x ≤ 43) = 0.0129



Learn more on Z probability :

https://brainly.com/question/4555552

Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.