Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
If you draw the bounded region in the x,y-plane, you'll find it to be somewhat ambiguous, but since y = 0 cuts the area between the parabola x = y ² and x = 4 perfectly in half, you can use either the top or bottom half. I'll use the top one, i.e. assume y ≥ 0.
For every x taken from the interval [0, 4], we can get a shell with height √x. The distance from x to the axis of revolution, x = 5, is 5 - x, which corresponds to the radius of the shell. The area of this shell is
2π (radius) (height) = 2π (5 - x) √x
Then the volume of the solid is the sum of infinitely many such shells made at every 0 ≤ x ≤ 4, given by the integral
[tex]\displaystyle 2\pi \int_0^4 (5-x)\sqrt x\,\mathrm dx = 2\pi \int_0^4 \left(5x^{1/2}-x^{3/2}\right)\,\mathrm dx \\\\ = 2\pi \left(\frac{10}3x^{3/2}-\frac25x^{5/2}\right)\bigg|_0^4 \\\\ = \boxed{\frac{416\pi}{15}}[/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.