At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
If you draw the bounded region in the x,y-plane, you'll find it to be somewhat ambiguous, but since y = 0 cuts the area between the parabola x = y ² and x = 4 perfectly in half, you can use either the top or bottom half. I'll use the top one, i.e. assume y ≥ 0.
For every x taken from the interval [0, 4], we can get a shell with height √x. The distance from x to the axis of revolution, x = 5, is 5 - x, which corresponds to the radius of the shell. The area of this shell is
2π (radius) (height) = 2π (5 - x) √x
Then the volume of the solid is the sum of infinitely many such shells made at every 0 ≤ x ≤ 4, given by the integral
[tex]\displaystyle 2\pi \int_0^4 (5-x)\sqrt x\,\mathrm dx = 2\pi \int_0^4 \left(5x^{1/2}-x^{3/2}\right)\,\mathrm dx \\\\ = 2\pi \left(\frac{10}3x^{3/2}-\frac25x^{5/2}\right)\bigg|_0^4 \\\\ = \boxed{\frac{416\pi}{15}}[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.