Answered

Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Three children are riding on the edge of a merry-go-round that is a solid disk with a mass of 102 kg and a radius of 1.53 m. The merry-go-round is initially spinning at 9.71 revolutions/minute. The children have masses of 31.7 kg, 29.0 kg and 31.9 kg. If the child who has a mass of 29.0 kg moves to the center of the merry-go-round, what is the new angular velocity in revolutions/minute

Sagot :

Three children of masses and their position on the merry go round

M1 = 22kg

M2 = 28kg

M3 = 33kg

They are all initially riding at the edge of the merry go round

Then, R1 = R2 = R3 = R = 1.7m

Mass of Merry go round is

M =105kg

Radius of Merry go round.

R = 1.7m

Angular velocity of Merry go round

ωi = 22 rpm

If M2 = 28 is moves to center of the merry go round then R2 = 0, what is the new angular velocity ωf

Using conservation of angular momentum

Initial angular momentum when all the children are at the edge of the merry go round is equal to the final angular momentum when the second child moves to the center of the merry go round  Then,

L(initial) = L(final)

Ii•ωi = If•ωf

So we need to find the initial and final moment of inertia

NOTE: merry go round is treated as a solid disk then I= ½MR²

I(initial)=½MR²+M1•R²+M2•R²+M3•R²

I(initial) = ½MR² + R²(M1 + M2 + M3)

I(initial) = ½ × 105 × 1.7² + 1.7²(22 + 28 + 33)

I(initial) = 151.725 + 1.7²(83)

I(initial) = 391.595 kgm²

Final moment of inertial when R2 =0

I(final)=½MR²+M1•R²+M2•R2²+M3•R²

Since R2 = 0

I(final) = ½MR²+ M1•R² + M3•R²

I(final) = ½MR² + (M1 + M3)• R²

I(final)=½ × 105 × 1.7² + ( 22 +33)•1.7²

I(final) = 151.725 + 158.95

I(final) = 310.675 kgm²

Now, applying the conservation of angular momentum

L(initial) = L(final)

Ii•ωi = If•ωf

391.595 × 22 = 310.675 × ωf

Then,

ωf = 391.595 × 22 / 310.675

ωf = 27.73 rpm

Answer: So, the final angular momentum is 27.73 revolution per minute