At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
[tex]\cos \left(90 ^\circ - x\right) \approx 0.1688[/tex]
Step-by-step explanation:
We are given that:
[tex]\displaystyle \tan x = \frac{3}{7}[/tex]
And we want to find the value of:
[tex]\displaystyle \cos \left(90^\circ - x\right)[/tex]
Recall that by definition, tan(θ) = sin(θ) / cos(θ). Hence:
[tex]\displaystyle \frac{\sin x }{\cos x} = \frac{3}{7}[/tex]
And by definition, sin(θ) = cos(90° - θ). Hence:
[tex]\displaystyle \frac{\cos \left(90^\circ - x\right)}{\cos x} = \frac{3}{7}[/tex]
Multiply:
[tex]\displaystyle \cos \left(90 ^\circ - x\right) = \frac{3}{7} \cos x[/tex]
Find cosine. Recall that tangent is the ratio of the opposite side to the adjacent side. Therefore, the opposite side is 3 and the adjacent side is 7.
Thus, by the Pythagorean Theorem, the hypotenuse will be:
[tex]\displaystyle h = \sqrt{3^2 + 7^2} = \sqrt{58}[/tex]
Cosine is the ratio of the adjacent side to the hypotenuse. Therefore:
[tex]\displaystyle \cos x = \frac{7}{\sqrt{58}}[/tex]
Thus:
[tex]\displaystyle \cos \left(90 ^\circ - x\right) = \frac{3}{7} \left(\frac{3}{\sqrt{58}}\right)[/tex]
Use a calculator. Hence:
[tex]\cos \left(90 ^\circ - x\right) \approx 0.1688[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.