Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
When figures are translated, rotated or reflected, the resulting figures are congruent to the original figure because the transformations are rigid. However, when a figure is dilated, the resulting figure is not congruent to the original figure.
ABCD and A'B'C'D are congruent because A'B'C'D is the result of rotating ABCD 180 degrees about the origin.
I've included the missing graph as an attachment.
Using points A and A' as our references.
We have:
[tex]A = (-1,1)[/tex]
[tex]A' = (1,-1)[/tex]
The rule of rotation 180 degrees about the origin is:
[tex](x,y) \to (-x,-y)[/tex]
So, we have:
[tex](-1,1) \to (-(-1),-1)[/tex]
[tex](-1,1) \to (1,-1)[/tex]
The above rule is applicable to other points in ABCD and A'B'C'D'
Since the rule of transformation is rotation (a rigid transformation), then ABCD and A'B'C'D are congruent.
Read more at:
https://brainly.com/question/9475847
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.