Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

PRACTICE ANOTHER A piece of wire 18 m long is cut into two pieces. One piece is bent into a square and the other is bent into an equilateral triangle. (a) How much wire should be used for the square in order to maximize the total area? m (b) How much wire should be used for the square in order to minimize the total area? m

Sagot :

Answer:

Step-by-step explanation:

We have the equations

4x + 3y = 18   where x = the side of the square and y = the side of the triangle

For the areas:

A = x^2 + √3y/2* y/2

A = x^2  + √3y^2/4

From the first equation x = (18 - 3y)/4

So substituting in the area equation:

A = [ (18 - 3y)/4]^2 + √3y^2/4

A = (18 - 3y)^2 / 16 + √3y^2/4

Now for maximum / minimum area the derivative = 0 so we have

A' = 1/16 * 2(18 - 3y) * -3 + 1/4 * 2√3 y = 0

-3/8 (18 - 3y) + √3 y /2 = 0

-27/4 + 9y/8 + √3y /2 = 0

-54 + 9y + 4√3y = 0

y = 54 / 15.93

= 3.39 metres

So x = (18-3(3.39) / 4 = 1.96.

This is a minimum value for x.

So the total length of wire the square  for minimum  total area is 4 * 1.96

= 7.84 m

There is no maximum area as the equation for the total area is a quadratic with a positive leading coefficient.

Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.