Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
Step-by-step explanation:
Maximum value is when cos x = 1
So it is -2 + 4(1) = 2.
Minimum value, when cos x = -1:
= -2 + 4(-1) = -6.
Answer:
The maximum 2 is reached when x=2pi,4pi, and 6pi.
The minimum -6 is reached when x=pi, 3pi,and 5pi.
Step-by-step explanation:
So let's first look at cos(x) on interval (0,21].
How many rotations is that? Does it at least contain 1 full rotation? If it contains one full rotation that means all the values from -1 to 1 (inclusive) are tagged? If it doesn't contain a full rotation, we might have to dig a little deeper.
So we know x=0 isn't included and that's when cosine is first 1,but this doesn't mean 1 won't be hit later.
Let's figure out the number of rotations:
21/(2pi)=3.3 approximately
This means we make at least 3 rotations.
So this means we definitely will have all the values from -1 to 1 tagged (inclusive).
Now let's look at whole function.
f(x) = -2 + 4 cos x
-2+(-4) to -2+4 will be the range of the function
So the minimum is -6 and the maximum is 2.
So the min occurs when cos(x)=-1 and the max occurs when cos(x)=1.
We have a little over three rotations and remember we can't include x=0.
cos(x)=1
when x=2pi (one full rotation)
when x=4pi (two full rotations)
when x=6pi (three full rotations)
We will stop here because cosine won't be 1 again until a fourth full rotation
cos(x)=-1
when x=pi (half rotation)
When x=3pi (one + half rotation)
When x=5pi (two+half rotation)
We can't include x=7pi (three+half rotation)
because this one is actually not in the interval because 3.5 is more than 3.3 .
The maximum 2 is reached when x=2pi,4pi, and 6pi.
The minimum -6 is reached when x=pi, 3pi,and 5pi.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.