Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Ask your questions and receive precise answers from experienced professionals across different disciplines. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

The ratio of the volumes of two spheres is 827. What is the ratio of the lengths of the radi of these two spheres?
23

The Ratio Of The Volumes Of Two Spheres Is 827 What Is The Ratio Of The Lengths Of The Radi Of These Two Spheres 23 class=

Sagot :

Answer:

2:3

Step-by-step explanation:

r_1^3:r_2^3=8:27

r_1:r_2=2:3

Answer:

2/3

Step-by-step explanation:

solve volume formula for r and then use v1 and v2 from the ratio to find r1 and r2

v = 4/3 Pi r**3

(3/4 v) / Pi = r**3

r = (3v/4Pi)**1/3

Then

r1 = (3*8/4pi)**3

   = (6/Pi)**1/3

   = 1.24

r2 = (3*27/4Pi)**3

   = (81/4Pi)**3

   = (6.45)**3

   = 1.8

Then

r1/r2 = 1.24/1.8 = .6666666 or 2/3

Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.