msm555
Answered

At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Find the differential coefficient of
[tex]e^{2x}(1+Lnx)[/tex]​


Sagot :

Nayefx

Answer:

[tex] \rm \displaystyle y' = 2 {e}^{2x} + \frac{1}{x} {e}^{2x} + 2 \ln(x) {e}^{2x} [/tex]

Step-by-step explanation:

we would like to figure out the differential coefficient of [tex]e^{2x}(1+\ln(x))[/tex]

remember that,

the differential coefficient of a function y is what is now called its derivative y', therefore let,

[tex] \displaystyle y = {e}^{2x} \cdot (1 + \ln(x) )[/tex]

to do so distribute:

[tex] \displaystyle y = {e}^{2x} + \ln(x) \cdot {e}^{2x} [/tex]

take derivative in both sides which yields:

[tex] \displaystyle y' = \frac{d}{dx} ( {e}^{2x} + \ln(x) \cdot {e}^{2x} )[/tex]

by sum derivation rule we acquire:

[tex] \rm \displaystyle y' = \frac{d}{dx} {e}^{2x} + \frac{d}{dx} \ln(x) \cdot {e}^{2x} [/tex]

Part-A: differentiating $e^{2x}$

[tex] \displaystyle \frac{d}{dx} {e}^{2x} [/tex]

the rule of composite function derivation is given by:

[tex] \rm\displaystyle \frac{d}{dx} f(g(x)) = \frac{d}{dg} f(g(x)) \times \frac{d}{dx} g(x)[/tex]

so let g(x) [2x] be u and transform it:

[tex] \displaystyle \frac{d}{du} {e}^{u} \cdot \frac{d}{dx} 2x[/tex]

differentiate:

[tex] \displaystyle {e}^{u} \cdot 2[/tex]

substitute back:

[tex] \displaystyle \boxed{2{e}^{2x} }[/tex]

Part-B: differentiating ln(x)e^2x

Product rule of differentiating is given by:

[tex] \displaystyle \frac{d}{dx} f(x) \cdot g(x) = f'(x)g(x) + f(x)g'(x)[/tex]

let

  • [tex]f(x) \implies \ln(x) [/tex]
  • [tex]g(x) \implies {e}^{2x} [/tex]

substitute

[tex] \rm\displaystyle \frac{d}{dx} \ln(x) \cdot {e}^{2x} = \frac{d}{dx}( \ln(x) ) {e}^{2x} + \ln(x) \frac{d}{dx} {e}^{2x} [/tex]

differentiate:

[tex] \rm\displaystyle \frac{d}{dx} \ln(x) \cdot {e}^{2x} = \boxed{\frac{1}{x} {e}^{2x} + 2\ln(x) {e}^{2x} }[/tex]

Final part:

substitute what we got:

[tex] \rm \displaystyle y' = \boxed{2 {e}^{2x} + \frac{1}{x} {e}^{2x} + 2 \ln(x) {e}^{2x} }[/tex]

and we're done!

Answer:

Product Rule for Differentiation

[tex]\textsf{If }y=uv[/tex]

[tex]\dfrac{dy}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}[/tex]

Given equation:

[tex]y=e^{2x}(1+\ln x)[/tex]

Define the variables:

[tex]\textsf{Let }u=e^{2x} \implies \dfrac{du}{dx}=2e^{2x}[/tex]

[tex]\textsf{Let }v=1+\ln x \implies \dfrac{dv}{dx}=\dfrac{1}{x}[/tex]

Therefore:

[tex]\begin{aligned}\dfrac{dy}{dx} & =u\dfrac{dv}{dx}+v\dfrac{du}{dx}\\\\\implies \dfrac{dy}{dx} & =e^{2x} \cdot \dfrac{1}{x}+(1+\ln x) \cdot 2e^{2x}\\\\& = \dfrac{e^{2x}}{x}+2e^{2x}(1+\ln x)\\\\ & = \dfrac{e^{2x}}{x}+2e^{2x}+2e^{2x} \ln x\\\\& = e^{2x}\left(\dfrac{1}{x}+2+2 \ln x \right)\end{aligned}[/tex]