msm555
Answered

Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Find the differential coefficient of
[tex]e^{2x}(1+Lnx)[/tex]​


Sagot :

Nayefx

Answer:

[tex] \rm \displaystyle y' = 2 {e}^{2x} + \frac{1}{x} {e}^{2x} + 2 \ln(x) {e}^{2x} [/tex]

Step-by-step explanation:

we would like to figure out the differential coefficient of [tex]e^{2x}(1+\ln(x))[/tex]

remember that,

the differential coefficient of a function y is what is now called its derivative y', therefore let,

[tex] \displaystyle y = {e}^{2x} \cdot (1 + \ln(x) )[/tex]

to do so distribute:

[tex] \displaystyle y = {e}^{2x} + \ln(x) \cdot {e}^{2x} [/tex]

take derivative in both sides which yields:

[tex] \displaystyle y' = \frac{d}{dx} ( {e}^{2x} + \ln(x) \cdot {e}^{2x} )[/tex]

by sum derivation rule we acquire:

[tex] \rm \displaystyle y' = \frac{d}{dx} {e}^{2x} + \frac{d}{dx} \ln(x) \cdot {e}^{2x} [/tex]

Part-A: differentiating $e^{2x}$

[tex] \displaystyle \frac{d}{dx} {e}^{2x} [/tex]

the rule of composite function derivation is given by:

[tex] \rm\displaystyle \frac{d}{dx} f(g(x)) = \frac{d}{dg} f(g(x)) \times \frac{d}{dx} g(x)[/tex]

so let g(x) [2x] be u and transform it:

[tex] \displaystyle \frac{d}{du} {e}^{u} \cdot \frac{d}{dx} 2x[/tex]

differentiate:

[tex] \displaystyle {e}^{u} \cdot 2[/tex]

substitute back:

[tex] \displaystyle \boxed{2{e}^{2x} }[/tex]

Part-B: differentiating ln(x)e^2x

Product rule of differentiating is given by:

[tex] \displaystyle \frac{d}{dx} f(x) \cdot g(x) = f'(x)g(x) + f(x)g'(x)[/tex]

let

  • [tex]f(x) \implies \ln(x) [/tex]
  • [tex]g(x) \implies {e}^{2x} [/tex]

substitute

[tex] \rm\displaystyle \frac{d}{dx} \ln(x) \cdot {e}^{2x} = \frac{d}{dx}( \ln(x) ) {e}^{2x} + \ln(x) \frac{d}{dx} {e}^{2x} [/tex]

differentiate:

[tex] \rm\displaystyle \frac{d}{dx} \ln(x) \cdot {e}^{2x} = \boxed{\frac{1}{x} {e}^{2x} + 2\ln(x) {e}^{2x} }[/tex]

Final part:

substitute what we got:

[tex] \rm \displaystyle y' = \boxed{2 {e}^{2x} + \frac{1}{x} {e}^{2x} + 2 \ln(x) {e}^{2x} }[/tex]

and we're done!

Answer:

Product Rule for Differentiation

[tex]\textsf{If }y=uv[/tex]

[tex]\dfrac{dy}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}[/tex]

Given equation:

[tex]y=e^{2x}(1+\ln x)[/tex]

Define the variables:

[tex]\textsf{Let }u=e^{2x} \implies \dfrac{du}{dx}=2e^{2x}[/tex]

[tex]\textsf{Let }v=1+\ln x \implies \dfrac{dv}{dx}=\dfrac{1}{x}[/tex]

Therefore:

[tex]\begin{aligned}\dfrac{dy}{dx} & =u\dfrac{dv}{dx}+v\dfrac{du}{dx}\\\\\implies \dfrac{dy}{dx} & =e^{2x} \cdot \dfrac{1}{x}+(1+\ln x) \cdot 2e^{2x}\\\\& = \dfrac{e^{2x}}{x}+2e^{2x}(1+\ln x)\\\\ & = \dfrac{e^{2x}}{x}+2e^{2x}+2e^{2x} \ln x\\\\& = e^{2x}\left(\dfrac{1}{x}+2+2 \ln x \right)\end{aligned}[/tex]