Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
[tex] \rm \displaystyle y' = 2 {e}^{2x} + \frac{1}{x} {e}^{2x} + 2 \ln(x) {e}^{2x} [/tex]
Step-by-step explanation:
we would like to figure out the differential coefficient of [tex]e^{2x}(1+\ln(x))[/tex]
remember that,
the differential coefficient of a function y is what is now called its derivative y', therefore let,
[tex] \displaystyle y = {e}^{2x} \cdot (1 + \ln(x) )[/tex]
to do so distribute:
[tex] \displaystyle y = {e}^{2x} + \ln(x) \cdot {e}^{2x} [/tex]
take derivative in both sides which yields:
[tex] \displaystyle y' = \frac{d}{dx} ( {e}^{2x} + \ln(x) \cdot {e}^{2x} )[/tex]
by sum derivation rule we acquire:
[tex] \rm \displaystyle y' = \frac{d}{dx} {e}^{2x} + \frac{d}{dx} \ln(x) \cdot {e}^{2x} [/tex]
Part-A: differentiating $e^{2x}$
[tex] \displaystyle \frac{d}{dx} {e}^{2x} [/tex]
the rule of composite function derivation is given by:
[tex] \rm\displaystyle \frac{d}{dx} f(g(x)) = \frac{d}{dg} f(g(x)) \times \frac{d}{dx} g(x)[/tex]
so let g(x) [2x] be u and transform it:
[tex] \displaystyle \frac{d}{du} {e}^{u} \cdot \frac{d}{dx} 2x[/tex]
differentiate:
[tex] \displaystyle {e}^{u} \cdot 2[/tex]
substitute back:
[tex] \displaystyle \boxed{2{e}^{2x} }[/tex]
Part-B: differentiating ln(x)•e^2x
Product rule of differentiating is given by:
[tex] \displaystyle \frac{d}{dx} f(x) \cdot g(x) = f'(x)g(x) + f(x)g'(x)[/tex]
let
- [tex]f(x) \implies \ln(x) [/tex]
- [tex]g(x) \implies {e}^{2x} [/tex]
substitute
[tex] \rm\displaystyle \frac{d}{dx} \ln(x) \cdot {e}^{2x} = \frac{d}{dx}( \ln(x) ) {e}^{2x} + \ln(x) \frac{d}{dx} {e}^{2x} [/tex]
differentiate:
[tex] \rm\displaystyle \frac{d}{dx} \ln(x) \cdot {e}^{2x} = \boxed{\frac{1}{x} {e}^{2x} + 2\ln(x) {e}^{2x} }[/tex]
Final part:
substitute what we got:
[tex] \rm \displaystyle y' = \boxed{2 {e}^{2x} + \frac{1}{x} {e}^{2x} + 2 \ln(x) {e}^{2x} }[/tex]
and we're done!
Answer:
Product Rule for Differentiation
[tex]\textsf{If }y=uv[/tex]
[tex]\dfrac{dy}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}[/tex]
Given equation:
[tex]y=e^{2x}(1+\ln x)[/tex]
Define the variables:
[tex]\textsf{Let }u=e^{2x} \implies \dfrac{du}{dx}=2e^{2x}[/tex]
[tex]\textsf{Let }v=1+\ln x \implies \dfrac{dv}{dx}=\dfrac{1}{x}[/tex]
Therefore:
[tex]\begin{aligned}\dfrac{dy}{dx} & =u\dfrac{dv}{dx}+v\dfrac{du}{dx}\\\\\implies \dfrac{dy}{dx} & =e^{2x} \cdot \dfrac{1}{x}+(1+\ln x) \cdot 2e^{2x}\\\\& = \dfrac{e^{2x}}{x}+2e^{2x}(1+\ln x)\\\\ & = \dfrac{e^{2x}}{x}+2e^{2x}+2e^{2x} \ln x\\\\& = e^{2x}\left(\dfrac{1}{x}+2+2 \ln x \right)\end{aligned}[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.