Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
9514 1404 393
Answer:
210
Step-by-step explanation:
The number of combinations of 10 things taken 6 at a time is ...
10!/(6!(10-6)!) = 210
210 bit strings of length 10 will have 6 1-bits.
Using combination
[tex]\\ \sf\longmapsto {}^{10}C_6[/tex]
We know
[tex]\boxed{\sf {}^nC_r=\dfrac{n!}{r!(n-r)!}}[/tex]
[tex]\\ \sf\longmapsto \dfrac{10!}{6!(10-6)!}[/tex]
[tex]\\ \sf\longmapsto \dfrac{10!}{6!(4!)}[/tex]
[tex]\\ \sf\longmapsto 210[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.