Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
9514 1404 393
Answer:
210
Step-by-step explanation:
The number of combinations of 10 things taken 6 at a time is ...
10!/(6!(10-6)!) = 210
210 bit strings of length 10 will have 6 1-bits.
Using combination
[tex]\\ \sf\longmapsto {}^{10}C_6[/tex]
We know
[tex]\boxed{\sf {}^nC_r=\dfrac{n!}{r!(n-r)!}}[/tex]
[tex]\\ \sf\longmapsto \dfrac{10!}{6!(10-6)!}[/tex]
[tex]\\ \sf\longmapsto \dfrac{10!}{6!(4!)}[/tex]
[tex]\\ \sf\longmapsto 210[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.