At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
9514 1404 393
Answer:
210
Step-by-step explanation:
The number of combinations of 10 things taken 6 at a time is ...
10!/(6!(10-6)!) = 210
210 bit strings of length 10 will have 6 1-bits.
Using combination
[tex]\\ \sf\longmapsto {}^{10}C_6[/tex]
We know
[tex]\boxed{\sf {}^nC_r=\dfrac{n!}{r!(n-r)!}}[/tex]
[tex]\\ \sf\longmapsto \dfrac{10!}{6!(10-6)!}[/tex]
[tex]\\ \sf\longmapsto \dfrac{10!}{6!(4!)}[/tex]
[tex]\\ \sf\longmapsto 210[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.