Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
The rocks are chosen without replacement, which means that the hypergeometric distribution is used to solve this question. First we get the parameters, and then we answer the questions. From this, we get that:
- [tex]E(X) = 5.25, Var(X) = 0.5966[/tex]
- P(X < 6) = 0.9545
- P(all specimens of one of the two types of rock are selected for analysis) = 0.2046.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
The mean and the variance are:
[tex]\mu = \frac{nk}{N}[/tex]
[tex]\sigma^2 = \frac{nk(N-k)(N-n)}{N^2(N-1)}[/tex]
We have that:
5 + 7 = 12 rocks, which means that [tex]N = 12[/tex]
9 are chosen, which means that [tex]n = 9[/tex]
7 are granite, which means that [tex]k = 7[/tex]
Question a:
[tex]E(X) = \mu = \frac{9\times7}{12} = 5.25[/tex]
[tex]Var(X) = \sigma^2 = \frac{9\times7(12-7)(12-9)}{12^2(12-1)} = 0.5966[/tex]
Thus:
[tex]E(X) = 5.25, Var(X) = 0.5966[/tex]
Question b:
Since there are only 5 specimens of basaltic rock, at least 9 - 5 = 4 specimens of granite are needed, which means that:
[tex]P(X < 6) = P(X = 4) + P(X = 5) + P(X = 6)[/tex]
In which
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 4) = h(4,12,9,7) = \frac{C_{7,4}*C_{5,5}}{C_{12,9}} = 0.1591[/tex]
[tex]P(X = 5) = h(5,12,9,7) = \frac{C_{7,5}*C_{5,4}}{C_{12,9}} = 0.4773[/tex]
[tex]P(X = 6) = h(6,12,9,7) = \frac{C_{7,6}*C_{5,3}}{C_{12,9}} = 0.3181[/tex]
Thus
[tex]P(X < 6) = P(X = 4) + P(X = 5) + P(X = 6) = 0.1591 + 0.4773 + 0.3181 = 0.9545[/tex]
So P(X < 6) = 0.9545.
Question c:
5 of basaltic and 4 of granite: 0.1591 probability.
7 of granite is P(X = 7), in which
[tex]P(X = 7) = h(7,12,9,7) = \frac{C_{7,7}*C_{5,2}}{C_{12,9}} = 0.0455[/tex]
0.1591 + 0.0455 = 0.2046, thus:
P(all specimens of one of the two types of rock are selected for analysis) = 0.2046.
A similar question is found at https://brainly.com/question/24008577
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.