Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
[tex]A = \begin{bmatrix}1&2\\1&1\end{bmatrix} \implies A^{-1} = \dfrac1{\det(A)}\begin{bmatrix}1&-1\\-2&1\end{bmatrix} = \begin{bmatrix}-1&1\\2&-1\end{bmatrix}[/tex]
where det(A) = 1×1 - 2×1 = -1.
[tex]B = \begin{bmatrix}0&-1\\1&2\end{bmatrix} \implies B^{-1} = \dfrac1{\det(B)}\begin{bmatrix}2&1\\-1&0\end{bmatrix} = \begin{bmatrix}2&1\\-1&0\end{bmatrix}[/tex]
where det(B) = 0×2 - (-1)×1 = 1. Then
[tex]B^{-1}A^{-1} = \begin{bmatrix}2&1\\-1&0\end{bmatrix} \begin{bmatrix}-1&1\\2&-1\end{bmatrix} = \begin{bmatrix}-1&3\\1&-2\end{bmatrix}[/tex]
On the other side, we have
[tex]AB = \begin{bmatrix}1&2\\1&1\end{bmatrix} \begin{bmatrix}0&-1\\1&2\end{bmatrix} = \begin{bmatrix}2&3\\1&1\end{bmatrix}[/tex]
and det(AB) = det(A) det(B) = (-1)×1 = -1. So
[tex](AB)^{-1} = \dfrac1{\det(AB)}\begin{bmatrix}1&-3\\-1&2\end{bmatrix} = \begin{bmatrix}-1&3\\1&-2\end{bmatrix}[/tex]
and both matrices are clearly the same.
More generally, we have by definition of inverse,
[tex](AB)(AB)^{-1} = I[/tex]
where [tex]I[/tex] is the identity matrix. Multiply on the left by A ⁻¹ to get
[tex]A^{-1}(AB)(AB)^{-1} = A^{-1}I = A^{-1}[/tex]
Multiplication of matrices is associative, so we can regroup terms as
[tex](A^{-1}A)B(AB)^{-1} = A^{-1} \\\\ B(AB)^{-1} = A^{-1}[/tex]
Now multiply again on the left by B ⁻¹ and do the same thing:
[tex]B^{-1}\left(B(AB)^{-1}\right) = (B^{-1}B)(AB)^{-1} = B^{-1}A^{-1} \\\\ (AB)^{-1} = B^{-1}A^{-1}[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.