Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
A linear equation can be written as:
[tex]y = a*x + b[/tex]
Where a is the slope and b is the y-intercept.
Defining x as the number of weeks since the start of the year, we can write the linear equations I and B as:
[tex]B(x) =\$70 + \$5*x[/tex]
(initial amount plus the amount that he saves each week times the number of weeks)
Similarly, for Ian we have:
[tex]I(x) = \$30 + \$15*x[/tex]
The graph of these lines can be seen below, where the blue one is I(x) and the green one is B(x).
Now we want to determine how much they had when they had the same amount.
This means that we need to solve:
B(x) = I(x)
Replacing the equations we get:
[tex]\$70 + \$5*x = \$30 + \$15*x[/tex]
Now we can solve this for x:
[tex]\$70 - \$30 = \$15*x - \$5*x[/tex]
[tex]\$40 = \$10*x[/tex]
[tex]\$40/\$10 = x[/tex]
[tex]4 = x[/tex]
So they have the same amount of money in week 4, and each one of them has:
[tex]B(4) = I(4) = \$70 + \$5*4 = \$70 + \$20 = \$90[/tex]
If you want to learn more about this, you can read:
https://brainly.com/question/13075913
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.