Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
A linear equation can be written as:
[tex]y = a*x + b[/tex]
Where a is the slope and b is the y-intercept.
Defining x as the number of weeks since the start of the year, we can write the linear equations I and B as:
[tex]B(x) =\$70 + \$5*x[/tex]
(initial amount plus the amount that he saves each week times the number of weeks)
Similarly, for Ian we have:
[tex]I(x) = \$30 + \$15*x[/tex]
The graph of these lines can be seen below, where the blue one is I(x) and the green one is B(x).
Now we want to determine how much they had when they had the same amount.
This means that we need to solve:
B(x) = I(x)
Replacing the equations we get:
[tex]\$70 + \$5*x = \$30 + \$15*x[/tex]
Now we can solve this for x:
[tex]\$70 - \$30 = \$15*x - \$5*x[/tex]
[tex]\$40 = \$10*x[/tex]
[tex]\$40/\$10 = x[/tex]
[tex]4 = x[/tex]
So they have the same amount of money in week 4, and each one of them has:
[tex]B(4) = I(4) = \$70 + \$5*4 = \$70 + \$20 = \$90[/tex]
If you want to learn more about this, you can read:
https://brainly.com/question/13075913
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.