Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
9514 1404 393
Answer:
about 3,160,000,000
Step-by-step explanation:
"Increases at a rate proportional to population" means the growth is exponential. It can be modeled by the equation ...
p = ab^t
We can find 'a' and 'b' using the given data points.
100 = ab^(-4) . . . . . . . population 4 days ago
100,000 = ab^(-2) . . . population 2 days ago
Dividing the second equation by the first, we find ...
1000 = b^2
b = 1000^(1/2)
Substituting for b in the first equation, we have ...
100 = a(1000^(1/2))^(-4) = a(1000^-2)
100,000,000 = a
Then the population model is ...
p = 100,000,000×1000^(t/2)
__
Tomorrow (t=1), the population will be ...
p = 100,000,000 × 1000^(1/2) ≈ 31.6 × 100,000,000
p ≈ 3,160,000,000 . . . . . bacteria by tomorrow
_____
Additional comment
We could write this as ...
p = 10^(8+1.5t)
Then for t=1, this is p = 10^(8+1.5) = 10^0.5 × 10^9 = 3.16×10^9
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.