Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Decide !!!!!!!!!!!!!!!!!!!!!!!!

Decide class=

Sagot :

Answer:

[tex]\displaystyle [CQF]=5[/tex]

Step-by-step explanation:

Note that [tex][n][/tex] refers to the area of some polygon [tex]n[/tex].

Diagonal [tex]\overline{AC}[/tex] forms two triangles, [tex]\triangle ABC[/tex] and [tex]\triangle ADC[/tex]. Both of these triangles have an equal area, and since the area of parallelogram [tex]ABCD[/tex] is given as [tex]210[/tex], each triangle must have an area of [tex]105[/tex].

Furthermore, [tex]\triangle ADC[/tex] is broken up into two smaller triangles, [tex]\triangle ADF[/tex] and [tex]\triangle ACF[/tex]. We're given that [tex]\frac{DF}{FC}=2[/tex]. Since [tex]DF[/tex] and [tex]FC[/tex] represent bases of [tex]\triangle ADF[/tex] and [tex]\triangle ACF[/tex] respectively and both triangles extend to point [tex]A[/tex], both triangles must have the same height and hence the ratio of the areas of [tex]\triangle ADF[/tex] and [tex]\triangle ACF[/tex] must be [tex]2:1[/tex] (recall [tex]A=\frac{1}{2}bh[/tex]).

Therefore, the area of each of these triangles is:

[tex][ACF]+[ADF]=105,\\[][ACF]+2[ACF]=105,\\3[ACF]=105,\\[][ACF]=35 \implies [ADF]=70[/tex]

With the same concept, the ratio of the areas of [tex]\triangle AQE[/tex] and [tex]\triangle DQE[/tex] must be [tex]2:1[/tex] respectively, from [tex]\frac{AE}{ED}=2[/tex], and the ratio of the areas of [tex]\triangle DQF[/tex] and [tex]\triangle CQF[/tex] is also [tex]2:1[/tex], from [tex]\frac{DF}{FC}=2[/tex].

Let [tex][DQE]=y[/tex] and [tex][CQF]=x[/tex] (refer to the picture attached). We have the following system of equations:

[tex]\displaystyle \begin{cases}2y+y+2x=70,\\y+2x+x=35\end{cases}[/tex]

Combine like terms:

[tex]\displaystyle \begin{cases}3y+2x=70,\\y+3x=35\end{cases}[/tex]

Multiply the second equation by [tex]-3[/tex], then add both equations:

[tex]\displaystyle \begin{cases}3y+2x=70,\\-3y-9x=-105\end{cases}\\\\\rightarrow 3y-3y+2x-9x=70-105,\\-7x=-35,\\x=[CQF]=\frac{-35}{-7}=\boxed{5}[/tex]

View image Corsaquix
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.