At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Let $\mathbf { u } , \mathbf { v } , \text { and } \mathbf { w }$ be vectors. Which of the following make sense, and which do not? Give reasons for your answers. $
a.( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { w }\quad
b. \mathbf { u } \times ( \mathbf { v } \cdot \mathbf { w } )\ quad
c. \mathbf { u } \times ( \mathbf { v } \times \mathbf { w } )\quad
d. \mathbf { u } \cdot ( \mathbf { v } \cdot \mathbf { w } ).$


Sagot :

(u × v) • w makes sense, since u × v is another vector, and so (u × v) • w is a scalar.

u × (v • w) does not make sense, since vw is a scalar, and the cross product is not defined between a vector and a scalar.

(u × v) × w makes sense, since u × v is a vector and so is w.

u • (v • w) does not make sense, since v • w is scalar, and the dot product is not defined between a vector and a scalar.