Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer: Choice B
[tex](f * g)(x) = \frac{x^2+6x+8}{x^2+2x-15}, \ \text{ for } x \ne -5 \text{ and } x \ne 3\\\\[/tex]
=================================================
Work Shown:
[tex]h(x) = (f * g)(x)\\\\h(x) = f(x) * g(x)\\\\h(x) = \frac{x^2-16}{x^2+3x-10}*\frac{x^2-4}{x^2-7x+12}\\\\h(x) = \frac{(x-4)(x+4)}{(x+5)(x-2)}*\frac{(x-2)(x+2)}{(x-3)(x-4)}\\\\h(x) = \frac{x+4}{(x+5)(x-2)}*\frac{(x-2)(x+2)}{x-3} \ \ \text{ ... see note 1}\\\\h(x) = \frac{x+4}{x+5}*\frac{x+2}{x-3} \ \ \text{ ... see note 2}\\\\h(x) = \frac{(x+4)(x+2)}{(x+5)(x-3)}\\\\h(x) = \frac{x^2+6x+8}{x^2+2x-15}\\\\[/tex]
note 1: A pair of (x-4) terms canceled
note 2: A pair of (x-2) terms canceled
------------------------------
Extra info (optional section):
The fact that [tex]x \ne -5 \text{ and } x \ne 3[/tex] is to avoid a division by zero error in the simplified version of h(x).
I would argue that [tex]x \ne 2 \text{ and } x \ne 4[/tex] should be thrown in as well simply so that the domains match up perfectly with the original f(x) and g(x) functions.
So I think the full domain should be that x is any real number but
[tex]x \ne -5 \text{ and } x \ne 2\\x \ne 3 \text{ and } x \ne 4[/tex]
Put another way: if x = 2 is allowed in h(x), then that clashes with the fact that it's not allowed in f(x). The same idea happens with x = 4 but with g(x) this time. It's possible your teacher glossed this fact over, or ran out of room.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.