Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Ask your questions and receive precise answers from experienced professionals across different disciplines. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer: Choice B
[tex](f * g)(x) = \frac{x^2+6x+8}{x^2+2x-15}, \ \text{ for } x \ne -5 \text{ and } x \ne 3\\\\[/tex]
=================================================
Work Shown:
[tex]h(x) = (f * g)(x)\\\\h(x) = f(x) * g(x)\\\\h(x) = \frac{x^2-16}{x^2+3x-10}*\frac{x^2-4}{x^2-7x+12}\\\\h(x) = \frac{(x-4)(x+4)}{(x+5)(x-2)}*\frac{(x-2)(x+2)}{(x-3)(x-4)}\\\\h(x) = \frac{x+4}{(x+5)(x-2)}*\frac{(x-2)(x+2)}{x-3} \ \ \text{ ... see note 1}\\\\h(x) = \frac{x+4}{x+5}*\frac{x+2}{x-3} \ \ \text{ ... see note 2}\\\\h(x) = \frac{(x+4)(x+2)}{(x+5)(x-3)}\\\\h(x) = \frac{x^2+6x+8}{x^2+2x-15}\\\\[/tex]
note 1: A pair of (x-4) terms canceled
note 2: A pair of (x-2) terms canceled
------------------------------
Extra info (optional section):
The fact that [tex]x \ne -5 \text{ and } x \ne 3[/tex] is to avoid a division by zero error in the simplified version of h(x).
I would argue that [tex]x \ne 2 \text{ and } x \ne 4[/tex] should be thrown in as well simply so that the domains match up perfectly with the original f(x) and g(x) functions.
So I think the full domain should be that x is any real number but
[tex]x \ne -5 \text{ and } x \ne 2\\x \ne 3 \text{ and } x \ne 4[/tex]
Put another way: if x = 2 is allowed in h(x), then that clashes with the fact that it's not allowed in f(x). The same idea happens with x = 4 but with g(x) this time. It's possible your teacher glossed this fact over, or ran out of room.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.