Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
[tex]\displaystyle \int_1^3 \frac{\mathrm dx}{x^2-2x+5}[/tex]
Follow the instruction and complete the square in the denominator:
x ² - 2x + 5 = (x ² - 2x + 1) + 4 = (x - 1)² + 4
Then the integral is
[tex]\displaystyle \int_{x=1}^{x=3} \frac{\mathrm dx}{(x-1)^2+4}[/tex]
Substitute y = x - 1 and dy = dx :
[tex]\displaystyle \int_{y+1=1}^{y+1=3} \frac{\mathrm dy}{y^2+4} = \int_{y=0}^{y=2}\frac{\mathrm dy}{y^2+4}[/tex]
Substitute y = 2 tan(z) and dy = 2 sec²(z) dz :
[tex]\displaystyle \int_{2\tan(z)=0}^{2\tan(z)=2}\frac{2\sec^2(z)}{(2\tan(z))^2+4}\,\mathrm dz = \frac12 \int_{z=0}^{z=\pi/4} \frac{\sec^2(z)}{\tan^2(z)+1}\,\mathrm dz \\\\ = \frac12 \int_{z=0}^{z=\pi/4} \frac{\sec^2(z)}{\sec^2(z)}\,\mathrm dz \\\\ = \frac12 \int_{z=0}^{z=\pi/4} \mathrm dz = \frac12 z\bigg|_{z=0}^{z=\pi/4} = \frac12 \left(\frac\pi4-0\right) = \boxed{\frac\pi8}[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.