Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The demand equation illustrates the price of an item and how it relates to the demand of the item.
- The slope of the demand function is -1/2
- The equation of the demand function is: [tex]R(x) = (300 - 10x) \times (20 + 5x)[/tex]
- The price that maximizes her revenue is: Ghc 85
From the question, we have:
[tex]Plates = 300[/tex]
[tex]Price = 20[/tex]
The number of plates (x) decreases by 10, while the price (y) increases by 5. The table of value is:
[tex]\begin{array}{cccccc}x & {300} & {290} & {280} & {270} & {260} \ \\ y & {20} & {25} & {30} & {35} & {40} \ \end{array}[/tex]
The slope (m) is calculated using:
[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]
So, we have:
[tex]m = \frac{25-20}{290-300}[/tex]
[tex]m = \frac{5}{-10}[/tex]
[tex]m = -\frac{1}{2}[/tex]
The equation of the demand is as follows:
The initial number of plates (300) decreases by 10 is represented as: (300 - 10x).
Similarly, the initial price (20) increases by 5 is represented as: (20 + 5x).
So, the demand equation is:
[tex]R(x) = (300 - 10x) \times (20 + 5x)[/tex]
Open the brackets to calculate the maximum revenue
[tex]R(x) =6000 + 1500x - 200x - 50x^2[/tex]
[tex]R(x) =6000 + 1300x - 50x^2[/tex]
Equate to 0
[tex]6000 + 1300x - 50x^2 =0[/tex]
Differentiate with respect to x
[tex]1300 - 100x =0[/tex]
Collect like terms
[tex]100x =1300[/tex]
Divide by 100
[tex]x =13[/tex]
So, the price at maximum revenue is:
[tex]Price= 20 + 5x[/tex]
[tex]Price= 20 + 5 * 13[/tex]
[tex]Price= 85[/tex]
In conclusion:
- The slope of the demand function is -1/2
- The equation of the demand function is: [tex]R(x) = (300 - 10x) \times (20 + 5x)[/tex]
- The price that maximizes her revenue is: Ghc 85
Read more about demand equations at:
https://brainly.com/question/21586143
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.