Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
-3
1 + 4 sqrt( 241 )
1 - 4 sqrt( 241 )
Step-by-step explanation:
We need minus lambda on the entries down the diagonal. I'm going to use m instead of the letter for lambda.
[-43-m 0 80]
[40 -3-m 80]
[24 0 45-m]
Now let's find the determinant
(-43-m)[(-3-m)(45-m)-0(80)]
-0[40(45-m)-80(24)]
+80[40(0)-(-3-m)(24)]
Let's simplify:
(-43-m)[(-3-m)(45-m)]
-0
+80[-(-3-m)(24)]
Continuing:
(-43-m)[(-3-m)(45-m)]
+80[-(-3-m)(24)]
I'm going to factor (-3-m) from both terms:
(-3-m)[(-43-m)(45-m)-80(24)]
Multiply the pair of binomials in the brackets and the other pair of numbers;
(-3-m)[-1935-2m+m^2-1920]
Simplify and reorder expression in brackets:
(-3-m)[m^2-2m-3855]
Set equal to 0 to find the eigenvalues
-3-m=0 gives us m=-3 as one eigenvalue
The other is a quadratic and looks scary because of the big numbers.
I guess I will use quadratic formula and a calculator.
(2 +/- sqrt( (-2)^2 - 4(1)(-3855) )/(2×1)
(2 +/- sqrt( 15424 )/(2)
(2 +/- sqrt( 64 )sqrt( 241 )/(2)
(2 +/- 8 sqrt( 241 )/(2)
1 +/- 4 sqrt( 241 )
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.