Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
About 1.85 seconds and 13.15 seconds.
Step-by-step explanation:
The height (in feet) of the rocket t seconds after launch is given by the equation:
[tex]h = -16t^2 + 240 t[/tex]
And we want to determine how many seconds after launch will be rocket be 390 feet above the ground.
Thus, let h = 390 and solve for t:
[tex]390 = -16t^2 +240t[/tex]
Isolate:
[tex]-16t^2 + 240 t - 390 = 0[/tex]
Simplify:
[tex]8t^2 - 120t + 195 = 0[/tex]
We can use the quadratic formula:
[tex]\displaystyle x = \frac{-b\pm\sqrt{b^2 -4ac}}{2a}[/tex]
In this case, a = 8, b = -120, and c = 195. Hence:
[tex]\displaystyle t = \frac{-(-120)\pm \sqrt{(-120)^2 - 4(8)(195)}}{2(8)}[/tex]
Evaluate:
[tex]\displaystyle t = \frac{120\pm\sqrt{8160}}{16}[/tex]
Simplify:
[tex]\displaystyle t = \frac{120\pm4\sqrt{510}}{16} = \frac{30\pm\sqrt{510}}{4}[/tex]
Thus, our two solutions are:
[tex]\displaystyle t = \frac{30+ \sqrt{510}}{4} \approx 13.15 \text{ or } t = \frac{30-\sqrt{510}}{4} \approx 1.85[/tex]
Hence, the rocket will be 390 feet above the ground after about 1.85 seconds and again after about 13.15 seconds.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.