Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

NO LINKS OR ANSWERING QUESTIONS YOU DON'T KNOW!!! PLEASE answer thoroughly. Chapter 9 part 2

4. How can you determine the maximum number of solutions for a polynomial? How are these counted on the graph?


Sagot :

9514 1404 393

Answer:

  a) the degree of the polynomial

  b) count the x-intercepts, with attention to multiplicity

Step-by-step explanation:

The Fundamental Theorem of Algebra tells you the number of zeros of a polynomial is equal to the degree of the polynomial. That is, for some polynomial p(x), the number of solutions to p(x)=0 will be the degree of p.

__

On a graph, a real zero of the polynomial will be an x-intercept. The "multiplicity" of a zero is the degree of the factor giving rise to that zero. When the multiplicity is even, the graph does not cross the x-axis at the x-intercept. The greater the multiplicity, the "flatter" the graph is at the x-intercept.

If all solutions (zeros) are distinct, then the number of real solutions can be found by counting the number of x-intercepts of the graph.

_____

By way of illustration, the attached graph is of a 6th-degree polynomial with 6 real zeros. From left to right, they are -1 (multiplicity 1), 1 (multiplicity 2), 4 (multiplicity 3). The higher multiplicities are intended to show the flattening that occurs at the x-intercept, and the fact that the graph does not cross the x-axis where the multiplicity is even.

View image sqdancefan