At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
9514 1404 393
Answer:
a) the degree of the polynomial
b) count the x-intercepts, with attention to multiplicity
Step-by-step explanation:
The Fundamental Theorem of Algebra tells you the number of zeros of a polynomial is equal to the degree of the polynomial. That is, for some polynomial p(x), the number of solutions to p(x)=0 will be the degree of p.
__
On a graph, a real zero of the polynomial will be an x-intercept. The "multiplicity" of a zero is the degree of the factor giving rise to that zero. When the multiplicity is even, the graph does not cross the x-axis at the x-intercept. The greater the multiplicity, the "flatter" the graph is at the x-intercept.
If all solutions (zeros) are distinct, then the number of real solutions can be found by counting the number of x-intercepts of the graph.
_____
By way of illustration, the attached graph is of a 6th-degree polynomial with 6 real zeros. From left to right, they are -1 (multiplicity 1), 1 (multiplicity 2), 4 (multiplicity 3). The higher multiplicities are intended to show the flattening that occurs at the x-intercept, and the fact that the graph does not cross the x-axis where the multiplicity is even.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.