Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
9514 1404 393
Answer:
a) the degree of the polynomial
b) count the x-intercepts, with attention to multiplicity
Step-by-step explanation:
The Fundamental Theorem of Algebra tells you the number of zeros of a polynomial is equal to the degree of the polynomial. That is, for some polynomial p(x), the number of solutions to p(x)=0 will be the degree of p.
__
On a graph, a real zero of the polynomial will be an x-intercept. The "multiplicity" of a zero is the degree of the factor giving rise to that zero. When the multiplicity is even, the graph does not cross the x-axis at the x-intercept. The greater the multiplicity, the "flatter" the graph is at the x-intercept.
If all solutions (zeros) are distinct, then the number of real solutions can be found by counting the number of x-intercepts of the graph.
_____
By way of illustration, the attached graph is of a 6th-degree polynomial with 6 real zeros. From left to right, they are -1 (multiplicity 1), 1 (multiplicity 2), 4 (multiplicity 3). The higher multiplicities are intended to show the flattening that occurs at the x-intercept, and the fact that the graph does not cross the x-axis where the multiplicity is even.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.