At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Identities to be used :-
[tex]\boxed{\sf 1-sin^2\theta=cos^2theta}[/tex]
[tex]\boxed{\sf cos^2\theta=\dfrac{1}{sec^2\theta}}[/tex]
Solution:-
Let's do
[tex]\\ \sf\longmapsto k=sec^2\theta(1+sin\theta)(1-sin\theta)[/tex]
[tex]\\ \sf\longmapsto k=sec^2\theta(1-sin^2\theta)[/tex]
[tex]\\ \sf\longmapsto k= sec^2\theta(cos^2\theta)[/tex]
[tex]\\ \sf\longmapsto k=sec^2\theta\times \dfrac{1}{sec^2\theta}[/tex]
[tex]\\ \sf\longmapsto k=1[/tex]
[tex]\color{lime}\boxed{\colorbox{black}{Answer : - }}[/tex]
[tex] \sec^{2} θ(1 + \sinθ)(1 - \sinθ) = k[/tex]
[tex] \sec^{2} θ \: (1 - { \sin}^{2} θ) = k[/tex]
[tex] { \sec }^{2} θ \cos^{2} θ = k[/tex]
[tex] \sec ^{2} θ. \frac{1}{ {sec}^{2}θ } = k[/tex]
[tex]1 = k[/tex]
Therefore:
[tex] \color{red}k = 1[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.