Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve this problem form the system of equations first, then solve them to find the values of the variables.
Nolan bought 2 apples and 10 bananas.
It's given that,
- Nolan and his children bought fruits (Apples and bananas) worth $8.
- Cost of each apple and bananas are $2 and $0.40 respectively.
Let the number of bananas he bought = y
And the number of apples = x
Therefore, cost of the apples =$2x
And the cost of bananas = $0.40y
Total cost of 'x' apples and 'y' bananas = $(2x + 0.40y)
Equation representing the total cost of fruits will be,
(2x + 0.40y) = 8
10(2x + 0.40y) = 10(8)
20x + 4y = 80
5x + y = 20 --------(1)
If he bought 5 times as many bananas as apples,
y = 5x ------(2)
Substitute the value of y from equation (2) to equation (1),
5x + 5x = 20
10x = 20
x = 2
Substitute the value of 'x' in equation (2)
y = 5(2)
y = 10
Therefore, Nolan bought 2 apples and 10 bananas.
Learn more,
https://brainly.com/question/14951851
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.