Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Since 64/3 = 21 + 1/3 > 21, I assume S is supposed to be the value of the infinite sum. So we have for some constants a and r (where |r | < 1),
[tex]S = \displaystyle \sum_{n=1}^\infty ar^{n-1} = \frac{64}3 \\\\ S_3 = \sum_{n=1}^3 ar^{n-1} = 21[/tex]
Consider the k-th partial sum of the series,
[tex]S_k = \displaystyle \sum_{n=1}^k ar^{n-1} = a \left(1 + r + r^2 + \cdots + r^{k-1}\right)[/tex]
Multiply both sides by r :
[tex]rS_k = a\left(r + r^2 + r^3 + \cdots + r^k\right)[/tex]
Subtract this from [tex]S_k[/tex]:
[tex](1 - r)S_k = a\left(1 - r^k\right) \implies S_k = a\dfrac{1-r^k}{1-r}[/tex]
Now as k goes to ∞, the r ᵏ term converges to 0, which leaves us with
[tex]S = \displaystyle \lim_{k\to\infty}S_k = \frac a{1-r} = \frac{64}3[/tex]
which we can solve for a :
[tex]\dfrac a{1-r} = \dfrac{64}3 \implies a = \dfrac{64(1-r)}3[/tex]
Meanwhile, the 3rd partial sum is given to be
[tex]\displaystyle S_3 = \sum_{k=1}^3 ar^{n-1} = a\left(1+r+r^2\right) = 21[/tex]
Substitute a into this equation and solve for r :
[tex]\dfrac{64(1-r)}3 \left(1+r+r^2\right) = 21 \\\\ \dfrac{64}3 (1 - r^3) = 21 \implies r^3 = \dfrac1{64} \implies r = \dfrac14[/tex]
Now solve for a :
[tex]a\left(1 + \dfrac14 + \dfrac1{4^2}\right) = 21 \implies a = 16[/tex]
It follows that
[tex]S_5 = a\left(1 + r + r^2 + r^3 + r^4\right) \\\\ S_5 = 16\left(1 + \dfrac14 + \dfrac1{16} + \dfrac1{64} + \dfrac1{256}\right) = \boxed{\frac{341}{16}} = 21 + \dfrac5{16} = 21.3125[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.