Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

An infinite geometric series has S=[tex]\frac{64}{3}[/tex] and [tex]S_{3}[/tex]=21. Find [tex]S_{5}[/tex].

Sagot :

Since 64/3 = 21 + 1/3 > 21, I assume S is supposed to be the value of the infinite sum. So we have for some constants a and r (where |r | < 1),

[tex]S = \displaystyle \sum_{n=1}^\infty ar^{n-1} = \frac{64}3 \\\\ S_3 = \sum_{n=1}^3 ar^{n-1} = 21[/tex]

Consider the k-th partial sum of the series,

[tex]S_k = \displaystyle \sum_{n=1}^k ar^{n-1} = a \left(1 + r + r^2 + \cdots + r^{k-1}\right)[/tex]

Multiply both sides by r :

[tex]rS_k = a\left(r + r^2 + r^3 + \cdots + r^k\right)[/tex]

Subtract this from [tex]S_k[/tex]:

[tex](1 - r)S_k = a\left(1 - r^k\right) \implies S_k = a\dfrac{1-r^k}{1-r}[/tex]

Now as k goes to ∞, the r ᵏ term converges to 0, which leaves us with

[tex]S = \displaystyle \lim_{k\to\infty}S_k = \frac a{1-r} = \frac{64}3[/tex]

which we can solve for a :

[tex]\dfrac a{1-r} = \dfrac{64}3 \implies a = \dfrac{64(1-r)}3[/tex]

Meanwhile, the 3rd partial sum is given to be

[tex]\displaystyle S_3 = \sum_{k=1}^3 ar^{n-1} = a\left(1+r+r^2\right) = 21[/tex]

Substitute a into this equation and solve for r :

[tex]\dfrac{64(1-r)}3 \left(1+r+r^2\right) = 21 \\\\ \dfrac{64}3 (1 - r^3) = 21 \implies r^3 = \dfrac1{64} \implies r = \dfrac14[/tex]

Now solve for a :

[tex]a\left(1 + \dfrac14 + \dfrac1{4^2}\right) = 21 \implies a = 16[/tex]

It follows that

[tex]S_5 = a\left(1 + r + r^2 + r^3 + r^4\right) \\\\ S_5 = 16\left(1 + \dfrac14 + \dfrac1{16} + \dfrac1{64} + \dfrac1{256}\right) = \boxed{\frac{341}{16}} = 21 + \dfrac5{16} = 21.3125[/tex]