Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
I believe I've addressed (1) in another question of yours (24529718).
For (2), the arc length of the curve parameterized by x(t) = 3 cos(t ) and y(t) = 3 sin(t ) over 0 ≤ t ≤ π is
[tex]\displaystyle \int_0^\pi \sqrt{\left(\frac{\mathrm dx}{\mathrm dt}\right)^2 + \left(\frac{\mathrm dy}{\mathrm dt}\right)^2}\,\mathrm dt[/tex]
We have
[tex]\dfrac{\mathrm dx}{\mathrm dt} = -3\sin(t) \text{ and }\dfrac{\mathrm dy}{\mathrm dt} = 3\cos(t)[/tex]
so that the integral reduces to
[tex]\displaystyle \int_0^\pi \sqrt{9\sin^2(t) + 9\cos^2(t)}\,\mathrm dt = 3\int_0^\pi\mathrm dt[/tex]
since [tex]\cos^2(t)+\sin^2(t)=1[/tex] for all t. The remaining integral is trivial:
[tex]\displaystyle 3\int_0^\pi\mathrm dt = 3t\bigg|_0^\pi = 3(\pi-0) = \boxed{3\pi}[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.