Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
I believe I've addressed (1) in another question of yours (24529718).
For (2), the arc length of the curve parameterized by x(t) = 3 cos(t ) and y(t) = 3 sin(t ) over 0 ≤ t ≤ π is
[tex]\displaystyle \int_0^\pi \sqrt{\left(\frac{\mathrm dx}{\mathrm dt}\right)^2 + \left(\frac{\mathrm dy}{\mathrm dt}\right)^2}\,\mathrm dt[/tex]
We have
[tex]\dfrac{\mathrm dx}{\mathrm dt} = -3\sin(t) \text{ and }\dfrac{\mathrm dy}{\mathrm dt} = 3\cos(t)[/tex]
so that the integral reduces to
[tex]\displaystyle \int_0^\pi \sqrt{9\sin^2(t) + 9\cos^2(t)}\,\mathrm dt = 3\int_0^\pi\mathrm dt[/tex]
since [tex]\cos^2(t)+\sin^2(t)=1[/tex] for all t. The remaining integral is trivial:
[tex]\displaystyle 3\int_0^\pi\mathrm dt = 3t\bigg|_0^\pi = 3(\pi-0) = \boxed{3\pi}[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.