At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer: 5 and 14.
Step-by-step explanation:
We know that the Raiders and Wildcats both scored the same number of points in the first quarter so let a,a+d,a+2d,a+3d be the quarterly scores for the Wildcats. The sum of the Raiders scores is a(1+r+r^{2}+r^{3}) and the sum of the Wildcats scores is 4a+6d. Now we can narrow our search for the values of a,d, and r. Because points are always measured in positive integers, we can conclude that a and d are positive integers. We can also conclude that $r$ is a positive integer by writing down the equation:
a(1+r+r^{2}+r^{3})=4a+6d+1
Now we can start trying out some values of r. We try r=2, which gives
15a=4a+6d+1
11a=6d+1
We need the smallest multiple of 11 (to satisfy the <100 condition) that is 1 (mod 6). We see that this is 55, and therefore a=5 and d=9.
So the Raiders' first two scores were 5 and 10 and the Wildcats' first two scores were 5 and 14.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.