Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
We're given the vectors
[tex]\vec a = 3\vec\imath + \vec\jmath - \vec k = \langle3,1,-1\rangle \\\\ \vec b = -3\,\vec\imath-\vec\jmath + \vec k = \langle-3,-1,1\rangle \\\\ \vec c = \vec\imath + \dfrac13\,\vec\jmath + \dfrac13\,\vec k = \left\langle1,\dfrac13,\dfrac13\right\rangle \\\\ \vec d = \vec\imath + 3\,\vec\jmath + 4\,\vec k = \langle 1,3,4\rangle \\\\ \vec g = \vec\imath + 3\,\vec\jmath - \vec k = \langle1,3,-1\rangle[/tex]
(a) Two vectors are perpendicular if their dot product is zero. For instance, [tex]\vec a[/tex] and [tex]\vec b[/tex] are not perpendicular because
[tex]\vec a\cdot\vec b = \langle3,1,-1\rangle\cdot\langle-3,-1,1\rangle = 3\times(-3)+1\times(-1)+(-1)\times1 = -11[/tex]
You'll find that none of these vectors taken two at a time are perpendicular to each other.
(b) Recall for any two vectors [tex]\vec x[/tex] and [tex]\vec y[/tex] that
[tex]\vec x\cdot\vec y = \|\vec x\| \|\vec y\| \cos(\theta)[/tex]
where [tex]\theta[/tex] is the angle between [tex]\vec x[/tex] and [tex]\vec y[/tex]. If these vectors are parallel, then the angle between them is 0 rad or π rad, meaning they point in the same or in opposite directions, respectively.
We have cos(0) = 1 and cos(π) = -1, so
[tex]\vec x\cdot\vec y = \pm\|\vec x\| \|\vec y\|[/tex]
For instance, we know that
[tex]\vec a\cdot\vec b = -11[/tex]
and we have
[tex]\|\vec a\| = \sqrt{3^2 + 1^2 + (-1)^2} = \sqrt{11} \\\\ \|\vec b\| = \sqrt{(-3)^2+(-1)^2+1^2} = \sqrt{11}[/tex]
so [tex]\vec a[/tex] and [tex]\vec b[/tex] are indeed parallel and point in opposite directions, since -11 = - √11 × √11.
On the other hand, [tex]\vec a[/tex] and [tex]\vec c[/tex] are not parallel, since
[tex]\vec a\cdot\vec c = \langle3,1,-1\rangle\cdot\left\langle1,\dfrac13,\dfrac13\right\rangle = 3\times1+1\times\dfrac13+(-1)\times\dfrac13 = 3 \\\\ \|\vec a\|\|\vec c\| = \sqrt{3^2+1^2+(-1)^2}\times\sqrt{1^2+\dfrac1{3^2}+\dfrac1{3^2}} = \dfrac{11}3[/tex]
and clearly 3 ≠ ±11/3.
It turns out that (a, b) is the only pair of parallel vectors.
(c) The cosine of an angle measuring between 0 and π/2 rad is positive, so you just need to check the sign of
[tex]\cos(\theta) = \dfrac{\vec x\cdot\vec y}{\|\vec x\|\|\vec y\|}[/tex]
For instance, we know [tex]\vec a[/tex] and [tex]\vec b[/tex] are parallel and have an angle of π rad between them. cos(π) = -1, so this pair doesn't qualify. Meanwhile, the angle between
[tex]\cos(\theta)=\dfrac3{\frac{11}3}\right) =\dfrac9{11} > 0[/tex]
so [tex]\vec a[/tex] and [tex]\vec c[/tex] do qualify.
You'd find that the pairs ((a, c), (a, d), (a, g), (c, d), (c, g), (d, g)).
(d) An angle between π/2 and π has a negative cosine. None of the vectors are perpendicular to each other, so this happens for the remaining pairs, ((a, b), (b, c), (b, d), (b, g)).
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.