Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
Ladybug covers [tex]$s=2cm$[/tex] distance from the moment she begins to decelerate until she comes to the rest.
Explanation:
• The net work done on a body is equal to change in kinetic energy of the body. This is called as Work-energy theorem. Numerically,
[tex]${K_f} - {K_i} = W$[/tex]
• To find the distance, which Ladybug cover from the moment she begins to decelerate until she comes to the rest, use the formula: [tex]${v^2} = {u^2} + 2as$[/tex]
Where, [tex]$v$[/tex] is final velocity, [tex]$u$[/tex] is initial velocity, [tex]$a$[/tex] is acceleration and [tex]$s$[/tex] is displacement.
• After moving, ladybug comes to the rest, so final velocity, [tex]$v = 0cm/sec$[/tex].
• Placing the value of the given initial velocity,[tex]$u=1cm/s$[/tex] , acceleration, [tex]$a = - 0 \cdot 25cm/se{c^2}$[/tex] and final velocity, [tex]$v = 0$\\[/tex] in the above formula.
[tex]$\[\begin{align}& \therefore{v^2} = {u^2} + 2as \\& \Rightarrow 0 = {\left( 1 \right)^2} + 2\left( { - 0 \cdot 25} \right)\left( s \right) \\& \Rightarrow 0 = 1 - 0 \cdot 5s \\& \Rightarrow 0 \cdot 5s = 1 \\& \Rightarrow s = 2cm \\\end{align}\]$[/tex]
• Hence, Ladybug covers [tex]$s=2cm$[/tex] distance from the moment she begins to decelerate until she comes to the rest.
Learn more about velocity here:
https://brainly.com/question/20771493
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.