At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
[tex]\displaystyle f'(x) = 90x^9 \tan^{-1}(x) + \frac{9x^{10}}{x^2 + 1}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle f(x) = 9x^{10} \tan^{-1}(x)[/tex]
Step 2: Differentiate
- [Function] Derivative Rule [Product Rule]: [tex]\displaystyle f'(x) = \frac{d}{dx}[9x^{10}] \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)][/tex]
- Rewrite [Derivative Property - Multiplied Constant]: [tex]\displaystyle f'(x) = 9 \frac{d}{dx}[x^{10}] \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)][/tex]
- Basic Power Rule: [tex]\displaystyle f'(x) = 90x^9 \tan^{-1}(x) + 9x^{10} \frac{d}{dx}[\tan^{-1}(x)][/tex]
- Arctrig Derivative: [tex]\displaystyle f'(x) = 90x^9 \tan^{-1}(x) + \frac{9x^{10}}{x^2 + 1}[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.