Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
[tex]9\, w^{2} - 100 = (3\, w - 10) \, (3\, w + 10)[/tex].
Step-by-step explanation:
Fact:
[tex]\begin{aligned} & (a - b)\, (a + b)\\ =\; & a^{2} + a\, b - a\, b - b^{2} \\ =\; & a^{2} - b^{2} \end{aligned}[/tex].
In other words, [tex](a^{2} - b^{2})[/tex], the difference of two squares in the form [tex]a^{2}[/tex] and [tex]b^{2}[/tex], could be factorized into [tex](a - b)\, (a + b)[/tex].
In this question, the expression [tex](9\, w^{2} - 100)[/tex] is the difference between two terms: [tex]9\, w^{2}[/tex] and [tex]100[/tex].
- [tex]9\, w^{2}[/tex] is the square of [tex]3\, w[/tex]. That is: [tex](3\, w)^{2} = 9\, w^{2}[/tex].
- On the other hand, [tex]10^{2} = 100[/tex].
Hence:
[tex]9\, w^{2} - 100 = (3\, w)^{2} - (10)^{2}[/tex].
Apply the fact that [tex]a^{2} - b^{2} = (a - b) \, (a + b)[/tex] to factorize this expression. (In this case, [tex]a = 3\, w[/tex] whereas [tex]b = 10[/tex].)
[tex]\begin{aligned}& 9\, w^{2} - 100 \\ =\; & (3\, w)^{2} - (10)^{2} \\ = \; & (3\, w - 10)\, (3\, w + 10)\end{aligned}[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.