Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
The annuity that should be worth after 6 years is $63,900.
Given that,
- The present value is $4,500.
- The semi-annual time period should be = 6 × 2 = 12.
- The rate of interest on semi-annual basis should be = 6% ÷ 2 = 3%
Now the following formula should be used:
[tex]Amount = Present\ value \times \frac{(1+ rate)^{(n)} - 1} {rate}\\\\= \$4,500 \times \frac{(1+0.03)^{12} - 1}{0.03}\\\\= \$4,500 \times \frac{0.4257}{0.03}\\\\= \$4,500 \times 14.1920\\\\= \$63,864\\\\= \$63,900[/tex]
Therefore we can conclude that the annuity that should be worth after 6 years is $63,900.
Learn more about the annuity here: brainly.com/question/17096402
Answer: 63900
Step-by-step explanation: Use the savings annuity formula
PN=d((1+r/k)N k−1)r/k
to calculate the value of P6. The question states that r=0.06, d=$4,500, k=2 compounding periods per year, and N=6 years. Substitute these values into the formula results in
P6=$4,500 ((1+0.06/2)6⋅2−1)/(0.06/2).
Simplifying, we have P6=$4,500 ((1.03)12−1)/(0.03). Therefore P6=$63,864.13. Our final answer is 63900.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.