Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

tan(2 sin^-1 0.4)
Find the Exact value


Sagot :

Answer:

tan(2u)=[4sqrt(21)]/[17]

Step-by-step explanation:

Let u=arcsin(0.4)

tan(2u)=sin(2u)/cos(2u)

tan(2u)=[2sin(u)cos(u)]/[cos^2(u)-sin^2(u)]

If u=arcsin(0.4), then sin(u)=0.4

By the Pythagorean Identity, cos^2(u)+sin^2(u)=1, we have cos^2(u)=1-sin^2(u)=1-(0.4)^2=1-0.16=0.84.

This also implies cos(u)=sqrt(0.84) since cosine is positive.

Plug in values:

tan(2u)=[2(0.4)(sqrt(0.84)]/[0.84-0.16]

tan(2u)=[2(0.4)(sqrt(0.84)]/[0.68]

tan(2u)=[(0.4)(sqrt(0.84)]/[0.34]

tan(2u)=[(40)(sqrt(0.84)]/[34]

tan(2u)=[(20)(sqrt(0.84)]/[17]

Note:

0.84=0.04(21)

So the principal square root of 0.04 is 0.2

Sqrt(0.84)=0.2sqrt(21).

tan(2u)=[(20)(0.2)(sqrt(21)]/[17]

tan(2u)=[(20)(2)sqrt(21)]/[170]

tan(2u)=[(2)(2)sqrt(21)]/[17]

tan(2u)=[4sqrt(21)]/[17]

We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.