Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
The vertical component of the initial velocity is [tex]v_0_y = \frac{y}{t} + \frac{1}{2} gt[/tex]
The horizontal component of the initial velocity is [tex]v_0_x = \frac{x}{t}[/tex]
The horizontal displacement when the object reaches maximum height is [tex]X = \frac{xy}{gt^2} + \frac{x}{2}[/tex]
The given parameters;
the horizontal displacement of the object, = x
the vertical displacement of the object, = y
acceleration due to gravity, = g
time of motion, = t
The vertical component of the initial velocity is given as;
[tex]y = v_0_yt - \frac{1}{2} gt^2\\\\v_0_yt = y + \frac{1}{2} gt^2\\\\v_0_y = \frac{y}{t} + \frac{1}{2} gt[/tex]
The horizontal component of the initial velocity is calculated as;
[tex]x = v_0_xt\\\\v_0_x = \frac{x}{t}[/tex]
The time to reach to the maximum height is calculated as;
[tex]T = \frac{v_f_y -v_0_y}{-g} \\\\T = \frac{-v_0_y}{-g} \\\\T = \frac{v_0_y}{g} \\\\T = \frac{1}{g} (v_0_y)\\\\T = \frac{1}{g} (\frac{y}{t} + \frac{1}{2} gt)\\\\T = \frac{y}{gt} + \frac{1}{2} t[/tex]
The horizontal displacement when the object reaches maximum height is calculated as;
[tex]X= v_0_x \times T\\\\X= \frac{x}{t} \times (\frac{y}{gt} + \frac{1}{2} t)\\\\X = \frac{xy}{gt^2} + \frac{x}{2}[/tex]
Learn more here: https://brainly.com/question/20689870
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.