Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The vertical component of the initial velocity is [tex]v_0_y = \frac{y}{t} + \frac{1}{2} gt[/tex]
The horizontal component of the initial velocity is [tex]v_0_x = \frac{x}{t}[/tex]
The horizontal displacement when the object reaches maximum height is [tex]X = \frac{xy}{gt^2} + \frac{x}{2}[/tex]
The given parameters;
the horizontal displacement of the object, = x
the vertical displacement of the object, = y
acceleration due to gravity, = g
time of motion, = t
The vertical component of the initial velocity is given as;
[tex]y = v_0_yt - \frac{1}{2} gt^2\\\\v_0_yt = y + \frac{1}{2} gt^2\\\\v_0_y = \frac{y}{t} + \frac{1}{2} gt[/tex]
The horizontal component of the initial velocity is calculated as;
[tex]x = v_0_xt\\\\v_0_x = \frac{x}{t}[/tex]
The time to reach to the maximum height is calculated as;
[tex]T = \frac{v_f_y -v_0_y}{-g} \\\\T = \frac{-v_0_y}{-g} \\\\T = \frac{v_0_y}{g} \\\\T = \frac{1}{g} (v_0_y)\\\\T = \frac{1}{g} (\frac{y}{t} + \frac{1}{2} gt)\\\\T = \frac{y}{gt} + \frac{1}{2} t[/tex]
The horizontal displacement when the object reaches maximum height is calculated as;
[tex]X= v_0_x \times T\\\\X= \frac{x}{t} \times (\frac{y}{gt} + \frac{1}{2} t)\\\\X = \frac{xy}{gt^2} + \frac{x}{2}[/tex]
Learn more here: https://brainly.com/question/20689870
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.