Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

the nucleic acid blank copies DNA so blank can be made

Sagot :

i believe the correct answer is Rna

Answer:

When nucleic acid copies the DNA it stores or transmits hereditary or genetic information.

Explanation:

To follow the historical pathway that led to our understanding of how heredity works, we have to start back at the cell. As it became more firmly established that all organisms are composed of cells, and that all cells were derived from pre-existing cells, it became more and more likely that inheritance had to be a cellular phenomena. As part of their studies, cytologists (students of the cell) began to catalog the common components of cells; because of resolution limits associated with available microscopes, these studies were restricted to larger eukaryotic cells. One such component of eukaryotic cells was the nucleus. At this point it is worth remembering that most cells do not contain pigments. Under these early microscopes, they appear clear, after all they are ~70% water. To be able to discern structural details cytologists had to stabilize the cell and to visualize its various components. As you might suspect, stabilizing the cell means killing it. To be observable, the cell had to be killed (known technically as “fixed”) in such a way as to insure that its structure was preserved as close to the living state as possible. Originally, this process involved the use of chemicals, such as formaldehyde, that could cross-link various molecules together. Cross-linking stops these molecules from moving with respect to one another. Alternatively, the cell could be treated with organic solvents such as alcohols; this leads to the local precipitation of the water soluble components. As long as the methods used to visualize the fixed tissue were of low magnification and resolution, the results were generally acceptable. In more modern studies, using various optical methods199 and electron microscopes, such crude fixation methods became unacceptable, and have been replaced by various alternatives, including rapid freezing. Even so it was hard to resolve the different subcomponents of the cell. To do this the fixed cells were treated with various dyes. Some dyes bind preferentially to molecules located within particular parts of the cell. The most dramatic of these cellular sub-regions was the nucleus, which could be readily identified because it was stained very differently from the surrounding cytoplasm. One standard stain involves a mixture of hematoxylin (actually oxidized hematoxylin and aluminum ions) and eosin, which leaves the cytoplasm pink and the nucleus dark blue200. The nucleus was first described by Robert Brown (1773-1858), the person after which Brownian motion was named. The presence of a nucleus was characteristic of eukaryotic (true nucleus) organisms201. Prokaryotic cells (before a nucleus) are typically much smaller and originally it was impossible to determine whether they had a nucleus or not (they do not).