Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Tables and graphs can be used to represent a function
- The cost when ground speed is 470mph and 590mph are $189.48 and $191.91 respectively.
- The domain of the function is x > 0
- The ground speed that minimizes the cost is 487.85 mph
Given
[tex]C(x) = 50 + \frac x7 + \frac{34000}{x}[/tex]
A. The cost when ground speed is 470 and 590mph
This means that x = 470 and x = 590
When [tex]x = 470[/tex], we have:
[tex]C(470) = 50 + \frac{470}{7} + \frac{34000}{470}[/tex]
[tex]C(470) = 189.48[/tex]
When [tex]x = 590[/tex], we have:
[tex]C(590) = 50 + \frac{590}{7} + \frac{34000}{590}[/tex]
[tex]C(590) = 191.91[/tex]
B. The domain
[tex]C(x) = 50 + \frac x7 + \frac{34000}{x}[/tex]
For the plane to move, the value of x (i.e. the ground speed) must be greater than 0.
Hence, the domain of the function is x > 0
C. The graph
See attachment for the graph of C(x)
D. The table of values from 0 to 50
So, we have:
[tex]C(0) = 50 + \frac{0}{7} + \frac{34000}{0} = und efin e d[/tex]
[tex]C(10) = 50 + \frac{10}{7} + \frac{34000}{10} =3451.43[/tex]
[tex]C(20) = 50 + \frac{20}{7} + \frac{34000}{20} =1752.85[/tex]
[tex]C(30) = 50 + \frac{30}{7} + \frac{34000}{30} = 1187.62[/tex]
[tex]C(40) = 50 + \frac{40}{7} + \frac{34000}{40} = 905.71[/tex]
[tex]C(50) = 50 + \frac{50}{7} + \frac{34000}{50} = 737.14[/tex]
So, we have:
[tex]\left[\begin{array}{ccccccc}x&0&10&20&30&40&50\\C(x)&&3451.43&1752.85&11.87.62&905.71&737.14\end{array}\right][/tex]
E. The speed that minimizes the cost
We have:
[tex]C(x) = 50 + \frac x7 + \frac{34000}{x}[/tex]
Differentiate the function
[tex]C'(x) = \frac 17 - 34000x^{-2}[/tex]
Equate to 0
[tex]\frac 17 - 34000x^{-2} = 0[/tex]
Collect like terms
[tex]- 34000x^{-2} = -\frac 17[/tex]
[tex]34000x^{-2} = \frac 17[/tex]
Solve for [tex]x^2[/tex]
[tex]x^2 = 34000 \times 7[/tex]
[tex]x^2 = 238000[/tex]
Take square roots
[tex]x = 487.85[/tex]
Hence, the ground speed that minimizes the cost is 487.85 mph
Read more about functions, tables and graphs at:
https://brainly.com/question/13473963
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.