Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
You have a system of equations here. R=Robert's piece of wire M=Maria's piece of wire
R/2=2M/3
and
R+M=10
With some basic algebra, you can make that first equation into
R=4M/3
then use substitution to get
(4M/3)+M=10
Then solve for M
(4M/3)+(3M/3)=10
7M/3=10
7M=30
M=30/7
so Maria's wire is 30/7 feet long. With a little more substitution, we can get:
R+(30/7)=10
R=10-(30/7)
R=(70/7)-(30/7)
R=40/7 feet long
So your final answer would be that Robert's wire is 10/7 feet longer than Maria's (which you could always put into decimal form)
R/2=2M/3
and
R+M=10
With some basic algebra, you can make that first equation into
R=4M/3
then use substitution to get
(4M/3)+M=10
Then solve for M
(4M/3)+(3M/3)=10
7M/3=10
7M=30
M=30/7
so Maria's wire is 30/7 feet long. With a little more substitution, we can get:
R+(30/7)=10
R=10-(30/7)
R=(70/7)-(30/7)
R=40/7 feet long
So your final answer would be that Robert's wire is 10/7 feet longer than Maria's (which you could always put into decimal form)
Robert's wire is [tex]1\frac{3}{7}[/tex] longer than Maria's wire
Further Explanation
Let's say
Robert's wire = x
Maria's wire = y
From the problem given we know that:
[tex]\boxed {\frac{1}{2} x = \frac{2}{3}y }\\ \boxed {x + y = 10 }[/tex]
[tex]\boxed {x = 10-y }[/tex]
So we get two equations:
[tex]\boxed {\frac{1}{2} x = \frac{2}{3}y }\\\boxed {\frac{1}{2} (10-y) = \frac{2}{3}y } \\\boxed {5 - \frac{1}{2}y = \frac{2}{3} y }\\\boxed {5 = \frac{2}{3}y + \frac{1}{2}y }\\\boxed {5 = \frac{7}{6} y }\\\boxed { y= \frac{30}{7} }[/tex]
Let's subsitute the variable y into one of the equation above:
[tex]\boxed {x + y = 10 }\\\boxed {x + \frac{30}{7} = 10 }\\\boxed { x = 10 -\frac{30}{7} }\\\boxed { x = \frac{70-30}{7} }\\\boxed { x = \frac{40}{7} }[/tex]
Robert's wire (x) is [tex]\frac{40}{7}[/tex] feet long and Maria's wire is [tex]\frac{30}{7}[/tex] long.
The difference between Robert's and Maria's is
[tex]\boxed {= \frac{40}{7} - \frac{30}{7} }\\\boxed {= \frac{10}{7} }\\\boxed {= 1\frac{3}{7} }[/tex]
Learn More
Multistep problem https://brainly.com/question/2954322
Multistep problem brainly.com/question/78097991
Mixed fraction brainly.com/question/745462
Keywords: multi-step problem, fraction, part to whole relationship, mixed fraction, additional fraction, subtraction fraction from a whole number
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.