Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
You have a system of equations here. R=Robert's piece of wire M=Maria's piece of wire
R/2=2M/3
and
R+M=10
With some basic algebra, you can make that first equation into
R=4M/3
then use substitution to get
(4M/3)+M=10
Then solve for M
(4M/3)+(3M/3)=10
7M/3=10
7M=30
M=30/7
so Maria's wire is 30/7 feet long. With a little more substitution, we can get:
R+(30/7)=10
R=10-(30/7)
R=(70/7)-(30/7)
R=40/7 feet long
So your final answer would be that Robert's wire is 10/7 feet longer than Maria's (which you could always put into decimal form)
R/2=2M/3
and
R+M=10
With some basic algebra, you can make that first equation into
R=4M/3
then use substitution to get
(4M/3)+M=10
Then solve for M
(4M/3)+(3M/3)=10
7M/3=10
7M=30
M=30/7
so Maria's wire is 30/7 feet long. With a little more substitution, we can get:
R+(30/7)=10
R=10-(30/7)
R=(70/7)-(30/7)
R=40/7 feet long
So your final answer would be that Robert's wire is 10/7 feet longer than Maria's (which you could always put into decimal form)
Robert's wire is [tex]1\frac{3}{7}[/tex] longer than Maria's wire
Further Explanation
Let's say
Robert's wire = x
Maria's wire = y
From the problem given we know that:
[tex]\boxed {\frac{1}{2} x = \frac{2}{3}y }\\ \boxed {x + y = 10 }[/tex]
[tex]\boxed {x = 10-y }[/tex]
So we get two equations:
[tex]\boxed {\frac{1}{2} x = \frac{2}{3}y }\\\boxed {\frac{1}{2} (10-y) = \frac{2}{3}y } \\\boxed {5 - \frac{1}{2}y = \frac{2}{3} y }\\\boxed {5 = \frac{2}{3}y + \frac{1}{2}y }\\\boxed {5 = \frac{7}{6} y }\\\boxed { y= \frac{30}{7} }[/tex]
Let's subsitute the variable y into one of the equation above:
[tex]\boxed {x + y = 10 }\\\boxed {x + \frac{30}{7} = 10 }\\\boxed { x = 10 -\frac{30}{7} }\\\boxed { x = \frac{70-30}{7} }\\\boxed { x = \frac{40}{7} }[/tex]
Robert's wire (x) is [tex]\frac{40}{7}[/tex] feet long and Maria's wire is [tex]\frac{30}{7}[/tex] long.
The difference between Robert's and Maria's is
[tex]\boxed {= \frac{40}{7} - \frac{30}{7} }\\\boxed {= \frac{10}{7} }\\\boxed {= 1\frac{3}{7} }[/tex]
Learn More
Multistep problem https://brainly.com/question/2954322
Multistep problem brainly.com/question/78097991
Mixed fraction brainly.com/question/745462
Keywords: multi-step problem, fraction, part to whole relationship, mixed fraction, additional fraction, subtraction fraction from a whole number
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.