Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Yes.
It can be proved by contradiction.
Let:
a - a rational number
b - an irrational number
c - the sum of a and b
[tex]a+b=c[/tex]
Let assume that c is a rational number. Then a and c can be expressed as fractions with integer numerator and denominator:
[tex]a=\dfrac{d}{e}\\ c=\dfrac{f}{g}\\[/tex] where [tex]d,e,f,g \in \mathbb{Z}[/tex]
[tex]\dfrac{d}{e}+b=\dfrac{f}{g}\\ b=\dfrac{f}{g}-\dfrac{d}{e}\\ b=\dfrac{ef}{eg}-\dfrac{dg}{eg}\\ b=\dfrac{ef-dg}{eg}[/tex]
Since [tex]d,e,f,g[/tex] are all integers, then the products [tex]ef,dg,eg[/tex] and the difference [tex]ef-dg[/tex] are integers as well. It means that the number [tex]b[/tex] is a rational number, but this on the other hand contradicts the earlier assumption that [tex]b[/tex] is an irrational number. Therefore [tex]c[/tex] must be an irrational number.
It can be proved by contradiction.
Let:
a - a rational number
b - an irrational number
c - the sum of a and b
[tex]a+b=c[/tex]
Let assume that c is a rational number. Then a and c can be expressed as fractions with integer numerator and denominator:
[tex]a=\dfrac{d}{e}\\ c=\dfrac{f}{g}\\[/tex] where [tex]d,e,f,g \in \mathbb{Z}[/tex]
[tex]\dfrac{d}{e}+b=\dfrac{f}{g}\\ b=\dfrac{f}{g}-\dfrac{d}{e}\\ b=\dfrac{ef}{eg}-\dfrac{dg}{eg}\\ b=\dfrac{ef-dg}{eg}[/tex]
Since [tex]d,e,f,g[/tex] are all integers, then the products [tex]ef,dg,eg[/tex] and the difference [tex]ef-dg[/tex] are integers as well. It means that the number [tex]b[/tex] is a rational number, but this on the other hand contradicts the earlier assumption that [tex]b[/tex] is an irrational number. Therefore [tex]c[/tex] must be an irrational number.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.