Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Yes.
It can be proved by contradiction.
Let:
a - a rational number
b - an irrational number
c - the sum of a and b
[tex]a+b=c[/tex]
Let assume that c is a rational number. Then a and c can be expressed as fractions with integer numerator and denominator:
[tex]a=\dfrac{d}{e}\\ c=\dfrac{f}{g}\\[/tex] where [tex]d,e,f,g \in \mathbb{Z}[/tex]
[tex]\dfrac{d}{e}+b=\dfrac{f}{g}\\ b=\dfrac{f}{g}-\dfrac{d}{e}\\ b=\dfrac{ef}{eg}-\dfrac{dg}{eg}\\ b=\dfrac{ef-dg}{eg}[/tex]
Since [tex]d,e,f,g[/tex] are all integers, then the products [tex]ef,dg,eg[/tex] and the difference [tex]ef-dg[/tex] are integers as well. It means that the number [tex]b[/tex] is a rational number, but this on the other hand contradicts the earlier assumption that [tex]b[/tex] is an irrational number. Therefore [tex]c[/tex] must be an irrational number.
It can be proved by contradiction.
Let:
a - a rational number
b - an irrational number
c - the sum of a and b
[tex]a+b=c[/tex]
Let assume that c is a rational number. Then a and c can be expressed as fractions with integer numerator and denominator:
[tex]a=\dfrac{d}{e}\\ c=\dfrac{f}{g}\\[/tex] where [tex]d,e,f,g \in \mathbb{Z}[/tex]
[tex]\dfrac{d}{e}+b=\dfrac{f}{g}\\ b=\dfrac{f}{g}-\dfrac{d}{e}\\ b=\dfrac{ef}{eg}-\dfrac{dg}{eg}\\ b=\dfrac{ef-dg}{eg}[/tex]
Since [tex]d,e,f,g[/tex] are all integers, then the products [tex]ef,dg,eg[/tex] and the difference [tex]ef-dg[/tex] are integers as well. It means that the number [tex]b[/tex] is a rational number, but this on the other hand contradicts the earlier assumption that [tex]b[/tex] is an irrational number. Therefore [tex]c[/tex] must be an irrational number.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.