Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

A block of mass, m=4.80 kg is placed on the edge of a rough surface of height h = 0.5 2m as shown above. The block is released and moves until it stops momentarily after compressing a horizontal spring (with a spring constant k = 2,000 N/m) by a compression distance x = 12.1 cm. Find the work done by friction.


Sagot :

This question can be easily solved by using the law of conservation of energy.

The work done by the friction is "9.9 J".

The law of conservation of energy applied to this condition gives the following equation:

[tex]Potential\ Energy\ Lost\ by\ Block = Energy\ Stored\ by\ Spring\ +\ Work\ done\ by\ friction\\\\mgh = \frac{1}{2}kx^2\ +\ W[/tex]where,

W = Work done by friction = ?

m = mass of the block = 4.8 kg

g = acceleration due to gravity = 9.81 m/s²

h = height = 0.52 m

k = spring constant = 2000 N/m

x = compression distance = 12.1 cm = 0.121 m

Therefore,

[tex](4.8\ kg)(9.81\ m/s^2)(0.52\ m)=\frac{1}{2}(2000\ N/m)(0.121\ m)^2+W\\W = 24.5\ J - 14.6\ J[/tex]

W = 9.9 J

Learn more about the law of conservation of energy here:

brainly.com/question/20971995?referrer=searchResults

The attached picture explains the law of conservation of energy.

View image hamzaahmeds
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.