Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

help please it's number lines​

Help Please Its Number Lines class=

Sagot :

sin(θ+β)=−

5

7

−4

15

2

Step-by-step explanation:

step 1

Find the sin(\theta)sin(θ)

we know that

Applying the trigonometric identity

sin^2(\theta)+ cos^2(\theta)=1sin

2

(θ)+cos

2

(θ)=1

we have

cos(\theta)=-\frac{\sqrt{2}}{3}cos(θ)=−

3

2

substitute

sin^2(\theta)+ (-\frac{\sqrt{2}}{3})^2=1sin

2

(θ)+(−

3

2

)

2

=1

sin^2(\theta)+ \frac{2}{9}=1sin

2

(θ)+

9

2

=1

sin^2(\theta)=1- \frac{2}{9}sin

2

(θ)=1−

9

2

sin^2(\theta)= \frac{7}{9}sin

2

(θ)=

9

7

sin(\theta)=\pm\frac{\sqrt{7}}{3}sin(θ)=±

3

7

Remember that

π≤θ≤3π/2

so

Angle θ belong to the III Quadrant

That means ----> The sin(θ) is negative

sin(\theta)=-\frac{\sqrt{7}}{3}sin(θ)=−

3

7

step 2

Find the sec(β)

Applying the trigonometric identity

tan^2(\beta)+1= sec^2(\beta)tan

2

(β)+1=sec

2

(β)

we have

tan(\beta)=\frac{4}{3}tan(β)=

3

4

substitute

(\frac{4}{3})^2+1= sec^2(\beta)(

3

4

)

2

+1=sec

2

(β)

\frac{16}{9}+1= sec^2(\beta)

9

16

+1=sec

2

(β)

sec^2(\beta)=\frac{25}{9}sec

2

(β)=

9

25

sec(\beta)=\pm\frac{5}{3}sec(β)=±

3

5

we know

0≤β≤π/2 ----> II Quadrant

so

sec(β), sin(β) and cos(β) are positive

sec(\beta)=\frac{5}{3}sec(β)=

3

5

Remember that

sec(\beta)=\frac{1}{cos(\beta)}sec(β)=

cos(β)

1

therefore

cos(\beta)=\frac{3}{5}cos(β)=

5

3

step 3

Find the sin(β)

we know that

tan(\beta)=\frac{sin(\beta)}{cos(\beta)}tan(β)=

cos(β)

sin(β)

we have

tan(\beta)=\frac{4}{3}tan(β)=

3

4

cos(\beta)=\frac{3}{5}cos(β)=

5

3

substitute

(4/3)=\frac{sin(\beta)}{(3/5)}(4/3)=

(3/5)

sin(β)

therefore

sin(\beta)=\frac{4}{5}sin(β)=

5

4

step 4

Find sin(θ+β)

we know that

sin(A + B) = sin A cos B + cos A sin Bsin(A+B)=sinAcosB+cosAsinB

so

In this problem

sin(\theta + \beta) = sin(\theta)cos(\beta)+ cos(\theta)sin (\beta)sin(θ+β)=sin(θ)cos(β)+cos(θ)sin(β)

we have

sin(\theta)=-\frac{\sqrt{7}}{3}sin(θ)=−

3

7

cos(\theta)=-\frac{\sqrt{2}}{3}cos(θ)=−

3

2

sin(\beta)=\frac{4}{5}sin(β)=

5

4

cos(\beta)=\frac{3}{5}cos(β)=

5

3

substitute the given values in the formula

sin(\theta + \beta) = (-\frac{\sqrt{7}}{3})(\frac{3}{5})+ (-\frac{\sqrt{2}}{3})(\frac{4}{5})sin(θ+β)=(−

3

7

)(

5

3

)+(−

3

2

)(

5

4

)

sin(\theta + \beta) = (-3\frac{\sqrt{7}}{15})+ (-4\frac{\sqrt{2}}{15})sin(θ+β)=(−3

15

7

)+(−4

15

2

)

sin(\theta + \beta) = -\frac{\sqrt{7}}{5}-4\frac{\sqrt{2}}{15}sin(θ+β)=−

5

7

−4

15

2

Step-by-step explanation:

i hope it helps to you

Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.