Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Dilation involves changing the size of a shape.
- See attachment for the graphs of ABC, A'B'C and A"B"C"
- A"B"C" is a dilation of A'B'C', with a scale factor of 1/4
From the given diagram, we have:
[tex]\mathbf{A = (4,-2)}[/tex]
[tex]\mathbf{B = (-2,-2)}[/tex]
[tex]\mathbf{C = (-2,2)}[/tex]
(a) Dilate by scale factor 2 with center (0,0)
We simply multiply the coordinates of ABC by 2
So, we have:
[tex]\mathbf{A' = 2 \times (4,-2) = (8,-4)}[/tex]
[tex]\mathbf{B' = 2 \times (-2,-2) = (-4,-4)}[/tex]
[tex]\mathbf{C' = 2 \times (-2,2) = (-4,4)}[/tex]
See attachment for the graph of A'B'C'
(b) Dilate by scale factor 2 with center (0,0)
We simply multiply the coordinates of ABC by 1/2
So, we have:
[tex]\mathbf{A" = \frac 12 \times (4,-2) = (2,-1)}[/tex]
[tex]\mathbf{B" = \frac 12 \times (-2,-2) = (-1,-1)}[/tex]
[tex]\mathbf{C' = \frac 12 \times (-2,2) = (-1,1)}[/tex]
See attachment for the graph of A"B"C'
(c) Is A"B"C" a dilation of A'B'C
Yes, A"B"C" is a dilation of A'B'C
- ABC is dilated by 2 to get A'B'C
- ABC is dilated by 1/2 to get A"B"C
So, the scale factor (k) from A'B'C' to A"B"C" is:
[tex]\mathbf{k = \frac{1/2}{2}}[/tex]
[tex]\mathbf{k = \frac 14}[/tex]
The scale factor (k) from A'B'C' to A"B"C" is 1/4
And the center is (0,0)
Read more about dilations at:
https://brainly.com/question/13176891
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.