Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

7) PG & E have 12 linemen working Tuesdays in Placer County. They work in groups of 8. How many
groups are there, if:
a) order is Important
b) Order is NOT Important


Sagot :

Part A

Since order matters, we use the nPr permutation formula

We use n = 12 and r = 8

[tex]_{n}P_{r} = \frac{n!}{(n-r)!}\\\\_{12}P_{8} = \frac{12!}{(12-8)!}\\\\_{12}P_{8} = \frac{12!}{4!}\\\\_{12}P_{8} = \frac{12*11*10*9*8*7*6*5*4*3*2*1}{4*3*2*1}\\\\_{12}P_{8} = \frac{479,001,600}{24}\\\\_{12}P_{8} = 19,958,400\\\\[/tex]

There are a little under 20 million different permutations.

Answer: 19,958,400

Side note: your teacher may not want you to type in the commas

============================================================

Part B

In this case, order doesn't matter. We could use the nCr combination formula like so.

[tex]_{n}C_{r} = \frac{n!}{r!(n-r)!}\\\\_{12}C_{8} = \frac{12!}{8!(12-8)!}\\\\_{12}C_{8} = \frac{12!}{4!}\\\\_{12}C_{8} = \frac{12*11*10*9*8!}{8!*4!}\\\\_{12}C_{8} = \frac{12*11*10*9}{4!} \ \text{ ... pair of 8! terms cancel}\\\\_{12}C_{8} = \frac{12*11*10*9}{4*3*2*1}\\\\_{12}C_{8} = \frac{11880}{24}\\\\_{12}C_{8} = 495\\\\[/tex]

We have a much smaller number compared to last time because order isn't important. Consider a group of 3 people {A,B,C} and this group is identical to {C,B,A}. This idea applies to groups of any number.

-----------------

Another way we can compute the answer is to use the result from part A.

Recall that:

nCr = (nPr)/(r!)

If we know the permutation value, we simply divide by r! to get the combination value. In this case, we divide by r! = 8! = 8*7*6*5*4*3*2*1 = 40,320

So,

[tex]_{n}C_{r} = \frac{_{n}P_{r}}{r!}\\\\_{12}C_{8} = \frac{_{12}P_{8}}{8!}\\\\_{12}C_{8} = \frac{19,958,400}{40,320}\\\\_{12}C_{8} = 495\\\\[/tex]

Not only is this shortcut fairly handy, but it's also interesting to see how the concepts of combinations and permutations connect to one another.

-----------------

Answer: 495