Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Since [tex]x^2-1=(x-1)(x+1)[/tex], by the remainder theorem we have
[tex]\dfrac{p(x)}{x-1} = q(x) + \dfrac{p(1)}{x-1} = q(x) + \dfrac{11}{x-1}[/tex]
where [tex]p(x) = x^{10}+x^9+\cdots+x+1[/tex].
Then
[tex]\dfrac{p(x)}{x^2-1} = q^*(x) + \dfrac{q(-1)}{x+1} + \dfrac{11}{x^2-1} = q^*(x) + \dfrac{q(-1)(x-1) + 11}{x^2-1}[/tex]
The only missing piece is q(x), which we can get through usual polynomial division:
[tex]\dfrac{x^{10}+x^9+\cdots+x+1}{x-1} = \underbrace{x^9 + 2x^8 + 3x^7 + \cdots + 9x + 10}_{q(x)} + \dfrac{11}{x-1}[/tex]
so that
[tex]q(-1) = (-1)^9 + 2(-1)^8 + \cdots + 9(-1) + 10 = 5[/tex]
Then the remainder we want is
[tex]\dfrac{p(x)}{x^2-1} = q^*(x) + \dfrac5{x+1} + \dfrac{11}{x^2-1} = q^*(x) + \dfrac{5(x-1)+11}{x^2-1} = q^*(x) + \dfrac{\boxed{5x+6}}{x^2-1}[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.