Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

use the discriminant to find the number and type of solution for x^2+6x=-9​

Sagot :

Answer:

D = 0; one real root

Step-by-step explanation:

Discriminant Formula:

[tex] \displaystyle \large{D = {b}^{2} - 4ac}[/tex]

First, arrange the expression or equation in ax^2+bx+c = 0.

[tex] \displaystyle \large{ {x}^{2} + 6x = - 9}[/tex]

Add both sides by 9.

[tex] \displaystyle \large{ {x}^{2} + 6x + 9 = - 9 + 9} \\ \displaystyle \large{ {x}^{2} + 6x + 9 = 0}[/tex]

Compare the coefficients so we can substitute in the formula.

[tex] \displaystyle \large{a {x}^{2} + bx + c = {x}^{2} + 6x + 9 }[/tex]

  • a = 1
  • b = 6
  • c = 9

Substitute a = 1, b = 6 and c = 9 in the formula.

[tex] \displaystyle \large{D = {6}^{2} - 4(1)(9)} \\ \displaystyle \large{D = 36 - 36} \\ \displaystyle \large{D = 0}[/tex]

Since D = 0, the type of solution is one real root.