Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Ask your questions and receive precise answers from experienced professionals across different disciplines. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
4^10 (base 4)
2^20 (base 2)
Step-by-step explanation:
Law of Exponent:
[tex] \displaystyle \large{ \frac{ {a}^{m} }{ {a}^{n} } = {a}^{m - n} }[/tex]
Compare:
[tex] \displaystyle \large{ \frac{ {a}^{m} }{ {a}^{n} } = \frac{ {4}^{8} }{ {4}^{ - 2} } }[/tex]
- a = 4
- m = 8
- n = -2
Therefore:
[tex] \displaystyle \large{ \frac{ {4}^{8} }{ {4}^{ - 2} } = {4}^{8 - ( - 2)} } \\ \displaystyle \large{ \frac{ {4}^{8} }{ {4}^{ - 2} } = {4}^{8 + 2} } \\ \displaystyle \large{ \frac{ {4}^{8} }{ {4}^{ - 2} } = {4}^{10} }[/tex]
Althought you didn't specific if I should leave answer as base 4 or base 2.
If you want the answer in base 2.
From:
[tex] \displaystyle \large{ {4}^{10} = { ({2}^{2}) }^{10} }[/tex]
Law of Exponent II
[tex] \displaystyle \large{ { ({a}^{m} )}^{n} = {a}^{m \times n} }[/tex]
Apply the law:
[tex] \displaystyle \large{ {4}^{10} = { ({2}^{2}) }^{10} } \\ \displaystyle \large{ {4}^{10} = {2}^{20} }[/tex]
Thus, in base 2 form, it's 2^20
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.