Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The linear regression model can be extended to forecast future values
The year at which the two trends will become equal is the year 1991
Reason:
Known parameters;
The given function that estimates the first trend is y = 5·x + 22.9
The given function that estimates the second trend is y = 3.3·x + 33
Where;
x = The number of years since 1985
Required:
The year when the two trends are equal
Solution:
The year when the two trends are equal is given by the point where the values of the functions are equal, which is found as follows;
Let, y₁ = 5·x + 22.9, and y₂ = 3.3·x + 33
When the two trends are equal, we have;
y₁ = y₂
Therefore;
5·x + 22.9 = 3.3·x + 33
Which gives;
5·x - 3.3·x = 33 - 22.9
1.7·x = 10.1
[tex]x = \dfrac{10.1}{1.7} = \dfrac{101}{17} \approx 5.94[/tex]
Therefore, the number of years since the 1985, after which the two trends become equal is x ≈ 5.94 which is approximately six years
Therefore, the two trends will be equal in approximately (1985 + 6) = 1991
The two trends will be equal in approximately the year 1991
Learn more about linear forecasting here:
https://brainly.com/question/15089939
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.