Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Please help, What is the nth term rule of the quadratic sequence below?
-4,1,12,29,52,81,116


Sagot :

If the sequence is quadratic, then the n-th term (n ≥ 1) is

[tex]p_n = an^2 + bn + c[/tex]

We're given the first four terms,

[tex]\begin{cases}p_1=-4\\p_2=1\\p_3=12\end{cases}[/tex]

Using the formula for the n-th term, this turns into a system of equations,

[tex]\begin{cases}a+b+c=-4\\4a+2b+c=1\\9a+3b+c=12\end{cases}[/tex]

Solve the system:

• Eliminate c :

(4a + 2b + c) - (a + b + c) = 1 - (-4)     ===>     3a + b = 5

(9a + 3b + c) - (a + b + c) = 12 - (-4)     ===>     8a + 2b = 16

• Multiply the second equation by 1/2 to get 4a + b = 8, then eliminate b and solve for a :

(4a + b) - (3a + b) = 8 - 5     ===>     a = 3

• Solve for b and c :

3a + b = 9 + b = 5     ===>     b = -4

a + b + c = 3 - 4 + c = -4     ===>     c = -3

Then the rule for the n-th term is

[tex]p_n = \boxed{3n^2 - 4n - 3}[/tex]