Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
f(x) is an exponential function, so [tex]f(x) = a\cdot b^x[/tex].
f(11) = 28 tells us [tex]28 = a\cdot b^{11}[/tex]
f(5) = 3 tells us [tex]3 = a\cdot b^5[/tex]
If we divide those equations, we'd have
[tex]\dfrac{28}{3} = \dfrac{a\cdot b^{11}}{a \cdot b^5}[/tex]
This simplifies to
[tex]\dfrac{28}{3} = b^6[/tex]
Take the sixth root of both sides and you have
[tex]\sqrt[6]{\dfrac{28}{3}} = b[/tex]
(technically it is ±, but b>0 for exponential functions)
Now using that, we have [tex]f(x) = a\cdot \left(\sqrt[6]{\frac{28}{3}}\right)^x[/tex].
Take a deep breath...
OK, we plug in 5 and 3 one more time to find a.
[tex]3= a\cdot \left(\sqrt[6]{\frac{28}{3}}\right)^5[/tex]
Divide by that mess on the left and you'll have a.
[tex]\dfrac{3}{\left(\sqrt[6]{\frac{28}{3}}\right)^5}= a[/tex]
And out function is [tex]f(x) = \dfrac{3}{\left(\sqrt[6]{\frac{28}{3}}\right)^5} \cdot \left(\sqrt[6]{\frac{28}{3}}\right)^x[/tex].
Wow, that's ugly.
You could use exponent rules to simplify this a bit:
[tex]f(x) =3\cdot \left(\sqrt[6]{\frac{28}{3}}\right)^{x-5}[/tex]
Now evaluate f(8) by putting 8 in for x and you'll get 9.16515138991, or 9.17 to the nearest hundredth.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.