Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Explain how to find each root, with its multiplicity, for the polynomial y=x^5-27x^2.

Sagot :

The roots of [tex]y = x^{5}-27\cdot x^{2}[/tex] are 0 (multiplicity 2), -3 (multiplicity 1), [tex]-\frac{3}{2}+i\,\frac{3\sqrt{3}}{2}[/tex] (multiplicity 1) and [tex]-\frac{3}{2}-i\,\frac{3\sqrt{3}}{2}[/tex] (multiplicity 1).

The characteristics of the polynomial can be derived from algebraic techniques. Roots and multiplicity can be found by factoring the polynomial. The multiplicity is represented by a power binomial of the form:

[tex](x-r_{i})^{m},\,m \le n[/tex] (1)

Where [tex]n[/tex] is the grade of the polynomial.

Now we proceed to factor the formula:

[tex]y = x^{5}-27\cdot x^{2}[/tex]

[tex]y = x^{2}\cdot (x^{3}-27)[/tex]

[tex]y = x^{2}\cdot (x^{2}+3\cdot x +9)\cdot (x-3)[/tex]

Please notice that [tex]x^{2}+3\cdot x + 9[/tex] have two complex roots.

[tex]y = x^{2}\cdot \left(x+\frac{3}{2}-i\,\frac{3\sqrt{3}}{2} \right)\cdot \left(x+\frac{3}{2}+i\,\frac{3\sqrt{3}}{3} \right)\cdot (x-3)[/tex]

The roots of [tex]y = x^{5}-27\cdot x^{2}[/tex] are 0 (multiplicity 2), -3 (multiplicity 1), [tex]-\frac{3}{2}+i\,\frac{3\sqrt{3}}{2}[/tex] (multiplicity 1) and [tex]-\frac{3}{2}-i\,\frac{3\sqrt{3}}{2}[/tex] (multiplicity 1).

We kindly invite to see this question on polynomials: https://brainly.com/question/1218505