Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
The general equation of a hyperbola is represented as: [tex]\mathbf{\frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1}[/tex]
The equation of the hyperbola is: [tex]\mathbf{\frac{(x - 2)^2}{9} - \frac{(y + 3)^2}{16} = 1}[/tex]
Recall that:
[tex]\mathbf{\frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1}[/tex]
The hyperbola lies on [tex]\mathbf{y = -3}[/tex]
This means that: [tex]\mathbf{k =y}[/tex]
So, we have:
[tex]\mathbf{k =-3}[/tex]
The length on the y-axis is 6.
So:
[tex]\mathbf{a = \frac 62}[/tex]
[tex]\mathbf{a = 3}[/tex]
Similarly, the hyperbola lies on [tex]\mathbf{x = 2}[/tex]
This means that: [tex]\mathbf{h =x}[/tex]
So, we have:
[tex]\mathbf{h =2}[/tex]
The length on the x-axis is 8.
So:
[tex]\mathbf{b = \frac 82}[/tex]
[tex]\mathbf{b = 4}[/tex]
At this point, we have:
[tex]\mathbf{k =-3}[/tex]
[tex]\mathbf{a = 3}[/tex]
[tex]\mathbf{h =2}[/tex]
[tex]\mathbf{b = 4}[/tex]
Substitute these values in [tex]\mathbf{\frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1}[/tex]
[tex]\mathbf{\frac{(x - 2)^2}{3^2} - \frac{(y -- 3)^2}{4^2} = 1}[/tex]
[tex]\mathbf{\frac{(x - 2)^2}{3^2} - \frac{(y + 3)^2}{4^2} = 1}[/tex]
Evaluate the exponents
[tex]\mathbf{\frac{(x - 2)^2}{9} - \frac{(y + 3)^2}{16} = 1}[/tex]
Hence, the equation of the hyperbola is: [tex]\mathbf{\frac{(x - 2)^2}{9} - \frac{(y + 3)^2}{16} = 1}[/tex]
Read more about equations of hyperbola at:
https://brainly.com/question/12919612
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.